Смекни!
smekni.com

Классы неорганических веществ. Растворы электролитов. Размеры атомов и водородная связь (стр. 2 из 2)


5. Растворы электролитов. Понятие об электролитической диссоциации

Электролиты. Известно, что существуют две основные причины прохождения электрического тока через проводники: либо за счет движения электронов в электрическом поле, либо за счет движения ионов. Электронная проводимость присуща, прежде всего, металлам.

Ионная проводимость присуща многим химическим соединениям, обладающим ионным строением, например солям в твердом или расплавленном состояниях, а также многим водным и неводным растворам. В связи с этим все вещества принято условно делить по их поведению в растворах на две категории: а) вещества, растворы которых обладают ионной проводимостью (электролиты); б) вещества, растворы которых не обладают ионной проводимостью (неэлектролиты). К электролитам относится большинство неорганических кислот, оснований и солей. К неэлектролитам относятся многие органические соединения, например спирты, углеводы.

Электролитическая диссоциация. Кроме хорошей электропроводности, растворы электролитов обладают более низкими значениями давления пара растворителя и температуры плавления и более высокими температурами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих свойств, шведский ученый С. Аррениус в 1887 г. предложил теорию электролитической диссоциации.

Под электролитической диссоциацией понимается распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов — катионов и анионов.

Процесс диссоциации во всех случаях является обратимым, поэтому при написании уравнений реакции диссоциации необходимо применять знак обратимости. Различные электролиты, согласно теории Аррениуса, диссоциируют на ионы в различной степени. Полнота распада зависит от природы электролита, его концентрации, природы растворителя, температуры. Степень диссоциации. Одним из важнейших понятий теории электролитической диссоциации Аррениуса является понятие о степени диссоциации. Степенью диссоциации а называется отношение числа молекул, распавшихся на ионы (n'), к общему числу растворенных молекул (n):

Из этого выражения очевидно, что а может изменяться от 0 (диссоциации нет) до 1 (полная диссоциация). Степень диссоциации часто выражают в процентах. Степень диссоциации электролита может быть определена только экспериментальным путем, например по измерению температуры замерзания раствора, по электропроводности раствора и т. д.

6. Мембранные сенсоры и биосенсоры

Электрохимические сенсоры и биосенсоры, устройства, в которых аналитический сигнал обеспечивается протеканием электрохимического процесса. Предназначены для качественного и количественного анализа химических соединений в жидких и газообразных средах. По сравнению с обычными аналитическими приборами отличаются портативностью, простотой конструкции, относительно низкой стоимостью. Электрохимические сенсоры составляют наиболее разработанную и широко используемую группу среди устройств, в которых аналитический сигнал обусловлен химическим взаимодействием в анализируемой среде. Различают потенциометрические, амперометрические, кондуктометрические, импедансометрические электрохимические сенсоры. Аналитическими сигналами служат, соотв.: потенциал индикаторного электрода (при нулевом токе через электрохимическую ячейку); ток, протекающий через ячейку при заданном значении электродного потенциала; электропроводность раствора электролита; электрохимический импеданс системы, представляющий собой электрический эквивалент определенного сочетания сопротивлений и емкостей в электрохимической цепи.

Электрохимические сенсоры используют главным образом для определения реакционноспособных (электроактивных) веществ, способных электрохимически восстанавливаться или окисляться на индикаторном электроде миниатюрной электрохимической ячейки, которая генерирует аналитический сигнал. В качестве индикаторных электродов служат инертные электроды (Pt, Pd, Au, Ag), химически активные (Сu, In, Sn) или модифицированные комплексные соединения, а также ионселективные электроды. Электролиты могут быть жидкими (растворы КС1, H2SO4, буферные растворы), твердыми (ZrO2, А12О3, Sb2O5 * nH2O), загущенными; применяют также полиэлектролиты.

В современных электрохимических сенсорах чувствительный элемент (трансдьюсер) по своей сути представляет гальванический элемент, предложенный Л. Кларком (1953), в котором два электрода и раствор электролита отделены от анализируемой среды полупроницаемой мембраной.

Рис. 1. Полярографический электрохимический детектор кислорода.

Например, в кислородном амперометрическом сенсоре (рис. 1) внутри цилиндрического корпуса 1 расположены индикаторный электрод 2 из платины и анод 3 из хлорида серебра (он же электрод сравнения). Электролит (водный раствор КС1) заливается в резервуар 4 и образует пленку 5 толщиной около 10 мкм. Полимерная мембрана 6 (полиэтилен, полипропилен, фторопласт, целлофан и др.) отделяет электролит от анализируемой среды (вода, газ), из которой кислород диффундирует через мембрану внутрь элемента и восстанавливается на катодно-поляризованном индикаторном электроде (реакция О2 + 4е- + 4Н+ = 2H2O). Ток восстановления определяется скоростью диффузии О2 сквозь мембрану. Скорость, в свою очередь, зависит от толщины и проницаемости мембраны. Катодная поляризация индикаторного электрода осуществляется как от постороннего источника тока, так и с помощью растворимого анода (гальванические сенсоры). Информативным параметром является предельный диффузионный ток при постоянном потенциале индикаторного электрода. Такие электрохимические сенсоры имеют, как правило, линейную зависимость электрического сигнала от парциального давления О2 (или др. электроактивного газа), что обеспечивает более высокую точность определения по сравнению, например, с потенциометрическим электрохимическим сенсором, в котором информативный параметр - равновесный (или квазиравновесный) электродный потенциал - имеет логарифмическую зависимость от содержания газа. Селективность электрохимических сенсоров определяется выбором подходящего материала электрода и рабочей области потенциалов. При анализе смеси газов необходимо, чтобы электрохимические реакции посторонних компонентов либо не имели места на данном электроде, либо протекали в области более высоких потенциалов.

Электрохимические сенсоры позволяют проводить анализ газообразных и жидких сред, в т. ч. суспензий, на содержание О2, О3, Н2, С12, H2S, оксидов N, С, S, причем без всякой пробоподготовки. Возможно определение концентраций, как больших (в случае выбросов, утечек загрязняющих газов и т. д.), так и малых - при контроле ПДК. Основные эксплуатационные характеристики электрохимических сенсоров: диапазон концентраций, чувствительность, селективность, быстродействие (время установления 90%-ного уровня сигнала), ресурс работы, отношение сигнал/шум. Диапазон концентраций Н2 и O2 составляет от 0 до 100% по объему, С12, SO2, H2S, CO - от 0,2 до 200 мг/м3 при быстродействии от 1 до 30 с. Отдельно выделяют электрохимические сенсоры для анализа биологических сред (биосенсоры). На индикаторном электроде биосенсоров закрепляется мембрана из целлофана с иммобилизованным ферментом (глюкозооксидаза, тирозиназа, фенолоксидаза, лакказа и др.). Определяют вещества, которые изменяют скорость ферментативных реакций: субстраты, ингибиторы, сами ферменты. Биосенсоры позволяют с высокой селективностью проводить автоматизированный анализ многокомпонентных систем на глюкозу, холестерин, мочевину, мочевую кислоту, аминокислоты и др. вещества, содержание которых варьирует от 0,05 мкг/мл до 1 мг/мл. Налажен промышленный выпуск электрохимических сенсоров для контроля содержания глюкозы в крови.

Перспективна разработка иммуноэлектрохимических сенсоров, в которых электрический сигнал преобразуется специфическим взаимодействием антиген - антитело.

Рис. 2. Схема электрохимического сенсора, изготовленного методом фотолитографии.

Перспективным для серийного производства электрохимических сенсоров считается формирование электродного узла чувствительного элемента с использованием микроэлектронных технологий. На рис. 2 показан единичный чип, полученный методом фотолитографии. На кремниевой пластине длиной 3 мм, шириной 0,8 мм и толщиной 0,38 мм размещена трехэлектродная электрохимическая система: индикаторный электрод из Pt (1), вспомогательный электрод из Pt (2) и хлорсеребряный электрод сравнения (3).


7. Литература

1. Богдановская В. А. [и др.], в кн.: Итоги науки и техники, сер. Электрохимия, т. 31, М., 1990

2. Измайлов Н. А., Электрохимия растворов, 3 изд., М., 1976.

3. Общая и неорганическая химия. Т.1. Теоретические основы химии: Учебник для вузов в 2 томах. Под ред. А.Ф. Воробьева. – М.: ИКЦ "Академкнига", 2004. – 371 с.: ил.

4. Тарасевич М. Р. [и др.], в кн.: Итоги науки и техники, сер. Электрохимия, т. 35, М., 1992.

5. Цивадзе А.Ю., Воробьев А.Ф., Савинкина Е.В. и др. Неорганическая химия. 1 и 2 часть. - М., "Наука", 2004.

6. http://ru.wikipedia.org