При кристаллизации водородные связи сохраняются.Кристаллические решетки водородных связей:
1) цепи (метанол);2) плоские двухмерные слои (борная кислота);3) пространственные трехмерные сетки (лед).Внутримолекулярная водородная связь – водородная связь, объединяющая части одной молекулы.
Межмолекулярная водородная связь – водородная связь, образующаяся между атомом водорода одной молекулы и атомом неметалла другой молекулы.
8. Цепные реакции. Механизм протекания цепных реакций
Существуют химические реакции, в которых взаимодействие между компонентами происходит довольно просто. Существует весьма обширная группа реакций, протекающих сложно. В этих реакциях каждый элементарный этап связан с предыдущим, без выполнения которого дальнейшая реакция невозможна. В таких реакциях образование продукта реакции являет собой результат цепи элементарных этапов реакции, что называется цепными реакциями, которые проходят при участии активных центров – атомов, ионов или радикалов (осколков молекул).Радикал – осколок молекулы, имеющий неспаренные электроны и проявляющий высокую реакционную активность (H, Cl, O, OH, CH3).
При взаимодействии активных центров с молекулами исходных компонентов происходит образование продуктов реакции и новых активных частиц, способствующих новому этапу взаимодействия. Активные центры способствуют и создают цепи последовательных превращений веществ.
В качестве примера цепной реакции можно привести реакцию синтеза хлористого водорода:
Эту реакцию провоцирует свет. Молекула хлора поглощает квант лучистой энергии hvи приходит в возбуждение, то есть атом в ней начинает энергично колебаться. Когда энергия колебаний превышает энергию связи, то происходит распад молекулы (фотохимическая диссоциация ):
Обрыв цепи – окончание цепи, характеризующееся соударением двух активных частиц и одной неактивной, результатом которой является образование молекулы и унос выделившейся энергии неактивной частицей.Цепные реакции делятся на: 1) неразветвленные цепные реакции;2) разветвленные цепные реакции.Неразветвленная цепная реакция характеризуется тем, что при каждом элементарном взаимодействии один активный центр образует молекулу продукта реакции и один новый активный центр. Разветвленная цепная реакция характеризуется тем, что по ходу взаимодействия свободного радикала с молекулой исходного реагента происходит образование нескольких новых активных центров, одни из которых дают начало новым активным центрам, а другие продолжают старую цепь.
Пример разветвленной цепной реакции – реакция образования воды из простых веществ:
Теория разветвленных цепных реакций была выдвинута Н.Н. Семеновым в 20-х годах XX века при изучении кинетики разнообразных процессов. Теория цепных реакций является научной основой для отраслей техники. Ядерные цепные реакции тоже относятся к цепным процессам.
ЦЕПНЫЕ РЕАКЦИИ – химические реакции, идущие путем последовательности одних и тех же элементарных стадий, на каждой из которых возникает одна или несколько активных частиц (атомов, свободных радикалов, ионов, ион-радикалов). По цепному механизму протекают реакции крекинга, горения, полимеризации и ряд других реакций
Цепи Боденштейна – Нернста. К концу 19 в. была разработана важнейшая глава физической химии – учение о равновесиях химических реакций (химическая термодинамика). Стало возможным рассчитывать, на какую максимально возможную глубину может пройти конкретная реакция при данных условиях. Одновременно создавалось учение о скоростях химических процессов – химическая кинетика. Накопленные ко второй половине 19 в. многочисленные экспериментальные данные можно было объяснить на основании закона действующих масс и уравнения Аррениуса. В то же время появлялись факты, которые невозможно было объяснить ни одной из существовавших теорий. Одной из самых загадочных оказалась очень простая с виду реакция водорода с хлором: H2 + Cl2 ® 2HCl.
В 1845 английский химик Джон Дрепер обнаружил, что под действием солнечного света хлор приобретает особую активность в реакции с водородом (см. ФОТОХИМИЯ). Еще более удивительный факт обнаружили в 1857 немецкий химик Роберт Бунзен и его ученик из Англии Генри Роско. Оказалось, что некоторые примеси даже в самых малых концентрациях могут оказать огромное влияние на скорость этой реакции. Например, малые добавки кислорода замедляли ее в сотни раз. Это был парадоксальный результат, так как кислород сам прекрасно реагирует с водородом. Обнаружились и другие непонятные явления. Например, скорость реакции зависела от материала стенки сосуда и даже от его размеров. В стройном, казалось бы, учении о скоростях реакций появилась брешь, и никто не знал, как с ней справиться.
А реакция водорода с хлором преподносила ученым все новые сюрпризы. В начале 20 в. Альберт Эйнштейн сформулировал закон, согласно которому каждый поглощенный квант света (фотон) вызывает изменения лишь в одной молекуле. Экспериментально несложно измерить число прореагировавших (или образовавшихся) молекул и число поглощенных в реакции квантов света. Отношение этих величин называется квантовым выходом реакции. Так, если на каждый поглощенный реагентами квант света образуется одна молекула продукта, то квантовый выход такой реакции равен единице. Однако экспериментально измеренные квантовые выходы многих реакций не соответствовали закону квантовой эквивалентности. В 1913 один из основоположников химической кинетики немецкий химик Макс Боденштейн измерил квантовый выход фотохимической реакции водорода с хлором H2 + Cl2 ® 2HCl. Результат оказался невероятным: число молекул HCl, образовавшихся при поглощении смесью одного кванта света, в некоторых условиях достигал миллиона! Боденштейн объяснил этот поразительный результат единственным разумным методом: каждый поглощенный квант света «запускает» длинную цепочку превращений, в которой реагируют сотни тысяч молекул исходных веществ (H2 и Cl2), превращаясь в молекулы продукта реакции (HCl). Это похоже на то, как выстроенные в ряд костяшки домино быстро, как по команде, падают одна за другой, если удачно толкнуть первую из них.
Боденштейном были сформулированы и основные принципы протекания нового типа химических превращений – цепных реакций. Эти реакции обязательно имеют три стадии: 1) зарождение цепи, когда происходит образование активных частиц; 2) продолжение (развитие) цепи; 3) обрыв цепи. Зарождение цепей в тепловой реакции происходит в результате диссоциации молекул при нагревании. В фотохимической реакции зарождение цепей происходит при поглощении кванта света. На стадии продолжения цепи образуются молекулы продуктов реакции и одновременно появляется новая активная частица, способная продолжать цепь. На стадии обрыва происходит исчезновение (дезактивация) активной частицы.
При сильном нагреве или при интенсивном освещении ультрафиолетовым светом цепная реакция водорода с хлором идет со взрывом. Но если температура не очень высокая или интенсивность света невелика, реакция идет спокойно. Основываясь на этом факте, Боденштейн выдвинул очень важный принцип стационарной концентрации промежуточных продуктов цепных реакций. В соответствии с этим принципом, скорость генерирования активных частиц на стадии зарождения равна скорости их исчезновения на стадии обрыва. Действительно, если бы скорость обрыва была больше скорости зарождения цепей, число активных частиц снизилось бы до нуля, и реакция прекратилась бы сама собой. В случае же преобладания скорости зарождения, число активных частиц росло бы со временем, что привело бы к взрыву.
Однако выяснение химического механизма для каждой стадии реакции водорода с хлором оказалось трудной задачей. Боденштейн предположил теорию энергетического разветвления: образующиеся в первичной реакции молекулы HCl несут избыточную энергию и потому способствуют протеканию дальнейших реакций, передавая избыток энергии молекулам исходных веществ. Однако эта теория в данном случае оказалась неверной. Правильный механизм реакции дал в 1918 немецкий физикохимик лауреат Нобелевской премии Вальтер Нернст. Он предположил, что активными частицами являются атомы водорода и хлора; при этом схема цепной реакции выглядела так. Зарождение цепи происходит при термической диссоциации молекул хлора при высокой температуре или же при поглощении ими квантов света при комнатной температуре: Cl2 ® 2Cl. Далее следуют две быстро повторяющиеся одна за другой стадии продолжения цепи: Cl + H2 ® HCl + H и H + Cl2 ® HCl + Cl. Обрыв цепей происходит, когда активные атомы водорода или хлора реагируют с молекулами примеси, или «прилипают» к стенке сосуда, или реагируют (рекомбинируют) друг с другом, превращаясь в неактивные молекулы H2 и Cl2.
В последующем было показано, что атомы водорода намного активнее атомов хлора; соответственно атомы водорода реагируют намного быстрее и потому их стационарная концентрация значительно ниже. Так, при комнатной температуре стационарная концентрация атомов водорода примерно в 100 раз меньше, чем атомов хлора. В результате вероятность встречи двух атомов водорода или атомов водорода и атомов хлора намного меньше, чем для двух атомов хлора, поэтому практически единственной реакцией обрыва цепей является рекомбинация атомов хлора: Cl + Cl ® Cl2. Если давление в реакционном сосуде очень мало, а его размеры невелики, активные частицы могу достигнуть стенки сосуда еще до того, как прореагируют с молекулами H2 и Cl2; в этих условиях важную роль может приобрести обрыв цепей на стенках реакционного сосуда.