Электрохимическая коррозия часто связана с наличием в металле случайных примесей или специально введенных легирующих добавок.
Многие химики в своё время были озадачены тем, что иногда реакция
Zn + H2SO4 = ZnSO4 + H2
не протекает. Было выяснено, что в такой ситуации в раствор нужно добавить немного сульфата меди (II) (медного купороса). В этом случае на поверхности цинка выделится медь
CaSO4 + Zn = ZnSO4 + Cu
и водород начнёт бурно выделяться. При объяснении данного явления в 1830 году швейцарским химиком А. де-ля Ривом была создана первая электрохимическая теория коррозии.
В 1800 году, вскоре после открытия итальянцем Л. Гальвани электрохимического явления, его соотечественник А. Вольта сконструировал источник электрического тока – гальванический элемент, что открыло человечеству эру электричества. В одном из вариантов источник состоял из чередующихся медных и цинковых дисков, разделенных пористым материалом и пропитанных раствором соли. В зависимости от числа дисков получается ток различной силы. При осаждении на поверхности цинка металлической меди получается короткозамкнутый элемент. В нём цинк является анодом, а медь – катодом. Поскольку медь находится в контакте с цинком и оба эти металла окружены раствором электролита, гальванический элемент является «включенным». Цинк в виде иона Zn2+ переходит в раствор серной кислоты, а оставшиеся от каждого атома два электрона перетекают на более электроположительный металл – медь:
Zn = Zn2+ + 2e–
К медному аноду подходят ионы водорода, принимают электроны и превращаются в атомы водорода, а затем и в молекулы водорода:
H+ + e (Cu) = H
2H = H2
Таким образом, потоки движения ионов разделены и при избытке кислоты процесс протекает до тех пор, пока не растворится весь цинк.
Итак, процессы электрохимической коррозии протекают по законам электрохимической кинетики, когда общая реакция взаимодействия может быть разделена на следующие, в значительной степени самостоятельные, электродные процессы:
анодный процесс - переход металла в раствор в виде ионов (в водных растворах, обычно гидратированных) с оставлением эквивалентного количества электронов в металле;
катодный процесс - ассимиляция появившихся в металле избыточных электронов деполяризаторами.
Различают коррозию с водородной, кислородной или окислительной деполяризацией. При наличии в растворе газообразного кислорода и невозможностью протекания процесса коррозии с водородной деполяризацией основную роль деполяризатора исполняет кислород. Коррозионные процессы, у которых катодная деполяризация осуществляется растворенным в электролите кислородом, называют процессами коррозии металлов с кислородной деполяризацией. Это наиболее распространенный тип коррозии металла в воде, в нейтральных и даже в слабокислых солевых растворах, в морской воде, в земле, в атмосфере воздуха.
Общая схема кислородной деполяризации сводится к восстановлению молекулярного кислорода до иона гидроокисла:
O + 4e +2HO 4OH
Коррозия металла с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой равно 0,21 атм.
Каждый процесс с кислородной деполяризацией включает следующие последовательные стадии.
Растворение кислорода в электролите.
Транспортировка растворенного кислорода в растворе электролита (за счет диффузии или перемешивания).
Перенос кислорода в результате движения электролита.
Перенос кислорода в диффузионном слое электролита или в пленке продуктов коррозии металла к катодным участкам поверхности.
Ионизация кислорода:
В реальных условиях коррозии металла наиболее затрудненными стадиями процесса являются:
Реакция ионизации кислорода на катоде. Возникающую при этом поляризацию называют перенапряжением кислорода. Говорят, что процесс идет с кинетическим контролем.
Диффузия кислорода к катоду, либо перенапряжение диффузии. В этом случае, говорят, что процесс идет с диффузионным контролем.
Возможны случаи, когда обе стадии – ионизация кислорода и диффузия кислорода оказывают влияние на процесс. Тогда говорят, о кинетически-диффузионном контроле.
Сущность первой электрохимической теории состояла в том, что примеси в металлах создают микрогальванические элементы, в которых происходит перетекание электронов от анодных участков к катодным. Поскольку катодный и анодный процессы разделены на поверхности, то разделены и противоположные потоки ионов, атомов и молекул. Разделенные потоки не мешают друг другу, и по этой причине процесс коррозии протекает быстрее, чем в случае микрогальванических элементов.
Конечно, в настоящее время теории электрохимической коррозии выглядят гораздо более совершенными. Они основаны на многочисленных экспериментальных фактах и выражены в математической форме.
Различают следующие типы электрохимической коррозии, имеющие наиболее важное практическое значение.
1. Коррозия в электролитах. К этому типу относятся коррозия в природных водах (морской и пресной), а также различные виды коррозии в жидких средах. В зависимости от характера среды различают:
а) кислотную;
б) щелочную;
в) солевую;
г) морскую коррозию.
По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как:
коррозия при полном погружении;
при неполном погружении;
при переменном погружении.
КОРРОЗИЯ МЕТАЛЛОВ ХИМИЧЕСКАЯ
— разрушение металлов вследствие хим. взаимодействия их с агрессивной средой, не проводящей электрич. ток. Процесс химической коррозии металлов характеризуется прямым соединением металла с агрессивными составными частями среды. Напр., железо при нагревании до высоких темп-р в атмосфере воздуха или печных топочных газов окисляется кислородом в продукты, наз. окалиной. Химическая коррозия металлов в газах при высоких темп-pax, называемая газовой коррозией, — сравнительно простой вид коррозии. Скорость К.м.х. в этом случае определяется в осн. свойствами слоя продуктов коррозии (защитной пленкой), сцепл. с поверхностью металла и возникающего в результате самого корроз. процесса. Свойства возникающих на металле защитных пленок зависят от состава металла, среды и условий (темп-ры, времени, скорости движения среды и др.). Введение в сталь хрома, алюминия, кремния значительно повышает ее стойкость против газовой коррозии. Химическая коррозия теп-лоэнергетич. оборудования протекает под действием насыщ. и перегретого пара. При работе оборудования хим. равновесие в реакции между водяным паром и железом не достигается, т.к. при парообразовании непрерывно отводится водород — один из продуктов реакции. Значит, корроз. стойкость металла теплоэнергетич. оборудования объясняется наличием на поверхности железа относительно коррозионно-стойкого защитного слоя, к-рый образуется при эксплуатации и состоит из закиси-окиси железа.
36. Коррозия металлов. Электрохимическая коррозия
Корро́зия (от лат. corrosio — разъедание) — это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример — кислородная коррозия железа в воде: 4Fe + 6Н2О + ЗО2 = 4Fe(OH)3. Гидратированный оксид железа Fe(OН)3 и является тем, что называют ржавчиной.
В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозии полимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько.
Классификация видов коррозии
Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых они протекают. Поэтому пока нет единой и всеобъемлющей классификации встречающихся случаев коррозии.
По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:
газовая коррозия;
атмосферная коррозия;
коррозия в неэлектролитах;
коррозия в электролитах;
подземная коррозия;
биокоррозия;
коррозия под воздействием блуждающих токов.
По условиям протекания коррозионного процесса различаются следующие виды:
контактная коррозия;
щелевая коррозия;
коррозия при неполном погружении;
коррозия при полном погружении;
коррозия при переменном погружении;
коррозия при трении;
межкристаллитная коррозия;
коррозия под напряжением.
По характеру разрушения:
сплошная коррозия, охватывающая всю поверхность:
равномерная;
неравномерная;
избирательная[1];
локальная (местная) коррозия, охватывающая отдельные участки:
пятнами;
язвенная;
точечная (или питтинг);
сквозная;
межкристаллитная (расслаивающая в деформированных заготовках и ножевая в сварных соединениях).
Главная классификация производится по механизму протекания процесса. Различают два вида:
химическую коррозию;
электрохимическую коррозию.
Коррозия металлов
Образование гальванических пар с пользой применяют для создания батарей и аккумуляторов. С другой стороны, образование такой пары приводит к неблагоприятному процессу, жертвой которого становится целый ряд металлов, — коррозии. Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.