Для измерения рН существуют различные методы. Приближённо реакцию раствора можно определить с помощью специальных реакторов, называемых индикаторами, окраска которых меняется в зависимости от концентрации ионов водорода. Наиболее распространены метиловый оранжевый, метиловый красный, фенолфталеин и лакмус.
27. Гидролиз солей. Обратимый и необратимый (полный) гидролиз. Роль процессов гидролиза при эксплуатации котельных установок.ъ
В общем случае под гидролизом понимают реакцию разложения вещества водой (от греч. «гидро» - вода, «лизис» - разложение). Гидролизу могут подвергаться белки, жиры, углеводы, эфиры и другие вещества. В неорганической химии чаще всего встречаются с гидролизом солей.
Гидролизом соли называется взаимодействие ионов соли с ионами воды, которое приводит к образованию слабых электролитов. В результате гидролиза солей их водные растворы показывают кислую, щелочную или нейтральную реакцию среды. Как известно, реакция среды зависит от концентрации ионов водорода Н+ или гидроксид-ионов ОН-.
Вода является слабым электролитом и диссоциирует по уравнению
Н2О = Н+ + ОН-.
Появление избытка ионов Н+ или ОН- в растворе объясняется тем, что ионы соли реагируют с ионами воды. Равновесие диссоциации воды смещается вправо, так как при гидролизе солей образуются слабые электролиты:
NH4C1 -> NH4+ + С1- CH3COONa -> СН3СОО~ + Na+
NH4+ + H2O = NH4OH + H+ СН3СОО~ + H2O = CH3COOH + OH-
В зависимости от природы соли в растворе накапливаются либо ионы Н+, либо ОН-, которые и определяют реакцию среды.
Гидролиз соли - это реакция, обратная реакции нейтрализации. Поэтому каждую соль можно представить себе как соединение, образованное основанием и кислотой. Кислоты и основания бывают сильными или слабыми электролитами. В зависимости от силы исходной кислоты и исходного основания различают четыре типа солей :
• образованные сильным основанием и слабой кислотой;
• образованные слабым основанием и сильной кислотой;
• образованные слабым основанием и слабой кислотой;
• образованные сильным основанием и сильной кислотой.
Соли, образованные сильным основанием и слабой кислотой
В водном растворе цианида калия соль полностью распадается на ионы калия К+ и цианид-ионы CN-. Ионы калия К+ и гидроксид-ионы ОН- могут находиться в растворе одновременно в значительных количествах. Ионы водорода Н+ и цианид-ионы CN- взаимодействуют между собой с образованием циановодородной кислоты. Этот процесс схематически может быть представлен следующим образом:
KCN -> К+ + CN-
Н2О + CN- = ОН- + НCN
В результате гидролиза такой соли в растворе находятся полностью продиссоциированная щелочь и слабо диссоциированная кислота. Эта кислота частично диссоциирует на ионы и возвращает в раствор часть ионов Н+ и CN-. Возникает обратная реакция и устанавливается динамическое химическое равновесие:
К+ + CN- + Н2О = К+ + ОН- + HCN.
Следовательно, реакция между цианидом калия и водой является обратимой и проходит не полностью. Такое явление называется обратимым гидролизом.
В результате того, что в растворе образуется сильный электролит гидроксид калия, концентрация гидроксид-ионов ОН- будет значительно больше концентрации ионов водорода Н+. В растворе соли возникает щелочная среда, т.е. рН > 7. Действительно, эксперимент показывает, что 0,1 М раствор этой соли имеет рН 11,1. Гидролиз цианида калия в сокращенной ионной форме можно представить уравнением
CN- + Н2О = ОН- + HCN.
Подобно раствору KCN, раствор ацетата натрия также имеет щелочную среду, что видно из молекулярного и сокращенного ионного уравнений гидролиза :
CHgCOONa + Н2О = СН3СООН + NaOH; СН3СОО- + Н2О = СН3СООН + ОН-.
Сокращенное ионное уравнение показывает, что гидролиз соли, образованной сильным основанием и слабой кислотой, идет по аниону слабой кислоты и реакция среды становится щелочной.
Соли, образованные слабым основанием и сильной кислотой.
Примером такой соли является йодид аммония NH4I. При растворении этой соли в воде катион аммония связывает гидроксид-ион ОН- воды, а ионы водорода накапливаются в растворе:
NH4I + Н2О = NH4OH + HI; NH4+ + Н2О = NH4OH + H+.
В результате гидролиза данной соли в растворе, образуются слабое основание NH4OH и сильная кислота HI. Йодоводородная кислота является сильным электролитом и в водном растворе полностью распадается на ионы. Концентрация ионов водорода становится значительно больше, чем концентрация гидроксид-ионов, и раствор соли имеет кислую среду, т.е рН 7.
Такой же процесс происходит и в случае растворения хлорида аммония NH4C1 в воде:
NH4C1 + Н2О = NH4OH + HC1 или NH4+ + Н2О = NH4OH + H+.
Таким образом, гидролиз соли, образованной слабым основанием и сильной кислотой, идет по катиону слабого основания и реакция среды становится кислой.
Соли, образованные слабым основанием и слабой кислотой
В случае гидролиза солей, образованных слабым основанием и слабой кислотой, оба иона ОН- и Н+ воды связываются. Образуются слабая кислота и слабое основание. CH3COONH4 -> СН3СОО- + NH4+
СН3СОО- + NH4+ +H2O = CH3COOH + СН3СОО- + NH4+
Гидролиз соли идет одновременно и по катиону, и по аниону. В зависимости от константы диссоциации продуктов гидролиза (кислоты и основания) реакция среды растворов таких солей может быть слабокислой, слабощелочной или нейтральной. Например, реакция среды в случае гидролиза ацетата аммония CH3COONH4 — нейтральная, поскольку константы диссоциации СН3СООН и NH4OH равны. В случае же гидролиза соли цианида аммония NH4CN реакция среды слабощелочная.
Таким образом, гидролиз соли, образованной слабым основанием и слабой кислотой, идет одновременно и по катиону, и по аниону. Реакция среды зависит от констант диссоциации продуктов гидролиза.
Соли, образованные сильным основанием и сильной кислотой
Соли этого типа гидролизу не подвергаются, потому что катионы и анионы этих солей не связываются с ионами Н+ и ОН- воды и в растворе не образуются молекулы слабых электролитов. Поскольку связывания ионов воды не происходит, реакция среды растворов этих солей остается нейтральной. Рассмотрим это на примере раствора хлорида натрия. Взаимодействие этой соли с водой можно представить уравнениями
NaCl + Н2О = NaOH + HC1 или Na++ С1- + Н2О = Na+ + ОН- + Н+ + С1-.
Производя сокращения в ионном уравнении, получаем Н2О = Н+ + ОН. Отсюда видно, что ионы соли не участвуют в реакций и среда остается нейтральной.
Следовательно, соли, образованные сильной кислотой и сильным основанием, при растворении в воде гидролизу не подвергаются, а реакция среды остается нейтральной.
Ранее мы рассмотрели гидролиз солей, образованных одноосновными кислотами и однокислотными основаниями. Продуктами гидролиза таких солей являются кислоты и основания.
Если соль образована слабой многоосновной кислотой или слабым многокислотным основанием, то гидролиз данной соли может протекать ступенчато. Число ступеней гидролиза зависит от основности слабой кислоты и кислотности слабого основания.
Рассмотрим гидролиз соли, образованной слабой многоосновной кислотой и сильным основанием. В водном растворе этих солей на первой ступени гидролиза образуется кислая соль вместо кислоты и сильное основание. Ступенчато гидролизуются соли K2Si03, Na2SO3, Na2S, Na3PO4 и др. Например, гидролиз Na2CO3 может быть изображен в виде уравнений.
Первая ступень: Na2CO3 + Н2О = NaHCO3 + NaOH; С032- + Н20 = HCO3- + ОН-
Продуктами первой ступени гидролиза является кислая соль гидрокарбонат натрия NaHCO3 и гидроксид натрия NaOH.
Вторая ступень:
NaHCO3 + Н2О = Н2СО3 + NaOH;
HCO3- + Н2О = Н2СО3 + ОН-.
Продуктами второй ступени гидролиза карбоната натрия Na2CO3 являются гидроксид натрия и слабая угольная кислота Н2СО3. Гидролиз по второй ступени протекает в значительно меньшей степени, чем по первой ступени. Среда раствора соли карбоната натрия Na2CO3 - щелочная (рН > 7), так как в растворе увеличивается концентрация гидроксид-ионов ОН-.
Гидролиз солей трехосновных слабых кислот протекает по трем ступеням. В качестве примера приведем уравнения гидролиза фосфата натрия.
Первая ступень:
Na3PO4 + Н2О = Na2HPO4 + NaOH;
PO43- +Н2О = HPO42- +NaOH.
Вторая ступень:
Na2HPO4 + H2O = NaH2PO4 + NaOH;
НРО42- +Н20 = Н2РО4- + ОН-.
Третья ступень:
NaH2PO4 + Н20 = Н3РО4 + NaOH;
H2PO4- + H2O = Na3PO4 + ОН-.
Гидролиз по первой ступени происходит в значительно большей степени, чем по второй. По третьей ступени гидролиз фосфата натрия практически не идет.
Рассмотрим гидролиз соли, образованной слабым многокислотным основанием и сильной кислотой. В водных растворах таких солей на первой ступени образуется основная соль вместо основания и сильная кислота. Ступенчатому гидролизу подвергаются соли : MgSO4, FeCl3, FeCl2, ZnCl2 и др. Например, гидролиз хлорида цинка ZnCl2 протекает по двум ступеням.
Первая ступень: ZnCl2+ H2O = ZnOHCl + НС1;
Вторая ступень: ZnOHCl+ H2O = Zn(OH)2 + HC1;
Гидролиз соли идет по катиону, так как соль образована слабым основанием Zn(OH)2 и сильной кислотой НС1. Катионы цинка Zn2+ связывают гидроксид-ионы ОН- воды. На первой ступени образуется основная соль ZnOHCl и сильная кислота НС1. На второй ступени образуется слабое основание Zn(OH)2 и тоже сильная хлороводородная кислота. Гидролиз по первой ступени протекает значительно больше, чем по второй. В растворе увеличивается концентрация ионов водорода Н+ и реакция среды будет кислая (рН <7).
Степень гидролиза. Смещение равновесия гидролиза.
Для большинства солей процесс гидролиза обратим. В состоянии равновесия только часть растворенной соли гидролизуется. Количественно гидролиз характеризуется степенью гидролиза h, которую выражают в долях единицы или в процентах.
Степень гидролиза (п) измеряется отношением количества гидролизованного вещества к общему количеству растворенного вещества: h = nr\no
где пr - количество гидролизованной соли, моль; п0 - общее количество растворенной соли, моль.
Например, если из каждых 3 моль соли, растворенной в воде, 0,015 моль подвергается гидролизу, то степень гидролиза равна 0,015/3 = 0,005, или 0,005 • 100°/о=0,5%.Степень гидролиза соли зависит от природы соли, концентрации раствора соли и температуры.