Смекни!
smekni.com

Общая и неорганическая химия (стр. 19 из 48)

Сущность процесса образования раствора можно показать на примере растворения твердого вещества в жидкости. С точки зрения молекулярно-кинетической теории растворение протекает следующим образом: при внесении в растворитель какого-либо твердого вещества, например, поваренной соли, частицы ионов Na+ и Cl-, находящиеся на поверхности, в результате колебательного движения, увеличивающегося при соударении с частицами растворителя, могут отрываться и переходить в растворитель. Этот процесс распространяется на следующие слои частиц, которые обнажаются в кристалле после удаления поверхностного слоя. Так постепенно частицы, образующие кристалл (ионы или молекулы), переходят в раствор. На рис дана наглядная схема разрушения ионной кристаллической решетки NaСl при растворении в воде, состоящей из полярных молекул. Частицы, перешедшие в раствор, вследствие диффузии распределяются по всему объему растворителя. С другой стороны, по мере увеличения концентрации частицы (ионы, молекулы), находящиеся в непрерывном движении, при столкновении с твердой поверхностью еще не растворившегося вещества могут задерживаться на ней, т.е. растворение всегда сопровождается обратным явлением - кристаллизацией. Может наступить такой момент, когда одновременно выделяется из раствора столько же частиц (ионов, молекул), сколько их переходит в раствор - наступает равновесие. По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы насыщенные, ненасыщенные и пересыщенные. По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным.Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следовательно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данного вещества при строго определенных условиях (температура, растворитель) - величина постоянная.Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, называется пересыщенным. Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблюдается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор становится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы - растворы с небольшим содержанием растворенного вещества; концентрированные растворы - растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соотношение количеств растворенного вещества и растворителя в растворе.

Сравнивая растворимость различных веществ, мы видим, что насыщенные растворы малорастворимых веществ являются разбавленными, а хорошо растворимых веществ - хотя и ненасыщенные, но довольно концентрированными.В зависимости от того, электронейтральными или заряженными частицами являются компоненты раствора, их подразделяют на молекулярные (растворы неэлектролитов) и ионные (растворы электролитов). Одна из характерных особенностей растворов электролитов заключается в том, что они проводят электрический ток. Химическая теория растворов развивалась Д.И.Менделеевым, который рассматривал растворы как смеси непрочных химических соединений молекул растворенного вещества с молекулами растворителя. Эти представления основывались на экспериментальной зависимости плотности водно-спиртовых растворов от состава и на зависимости первой производной от плотности спиртового раствора по числу моль спирта в зависимости от состава раствора.

Развитием теории Д.И.Менделеева является полиэдрическая теория образования растворов, согласно которой в жидкости из однородных и разнородных молекул создаются элементарные пространственные группы-полиэдры. Однако химическая теория не может объяснить механизм образования идеальных растворов, отклонения в свойствах реальных растворов от свойств идеальных растворов и др.

Для объяснения свойств идеальных растворов с изменением их состава била предложена физическая теория (В.Ф.Алексеев - 1870--1880 гг.) и была проложена в работах Вант-Гоффа, Аррениуса и др. Согласно этой теории, процесс растворения одного вещества в другом является результатом простого распределения молекул по объему тепловым движением, при этом между взаимодействующими молекулами проявляются только слабые MМB. В результате простого перемешивания молекул веществ процесс растворения при создании идеальных растворов не сопровождается тепловым эффектом. Идеальными свойствами обладают также разбавленные растворы. Идеальными свойствами в любых пределах изменения концентрации растворов об­ладают смеси веществ с близкими по свойствам молекулами: н-гептан-н-гексан, оптические изомеры.Общая теория растворов в настоящее время не создана, хотя проводятся широкие научные исследования методами квантовой химии, статистической термодинамики, кристаллохимии, различными физико-химическими методами анализа Д.И.Менделеев указывал, что образование растворов может рассматриваться с двух сторон: с физической и химической, и в растворах виднее, чем где-либо, насколько эти стороны естествознания сближены между собою. В учении о растворах широко используются представления о полиэдрической их структуре и развиваются аналитические методы, связывающие структуру, состав и свойства растворов.

21. Фазовые равновесия в гетерогенных системах, фазовые превращения и правило фаз. Диаграммы состояния

Фазовое равновесие, сосуществование термодинамически равновесных фаз гетерогенной системы. Является одним из основных случаев термодинамического равновесия и включает в себя условия равенства температуры всех частей системы (термическое равновесие), равенства давления во всем объеме системы (механическое равновесие) и равенство химических потенциалов каждого компонента во всех фазах системы, что обеспечивает равновесное распределение компонентов между фазами. Число фаз f, находящихся одновременно в равновесии, связано с числом компонентов k, числом n независимых параметров, определяющих состояние системы (обычно, когда учитывается только влияние температуры и давления, n = 2), и числом термодинамических степеней свободы v уравнением: v = k + 2 - f (см. Фаз правило).В общем виде условие фазовое равновесие, согласно принципу равновесия Гиббса, сводится к максимуму энтропии S системы при постоянстве внутренней энергии U, общего объема V и числа молей каждого компонента ni-. Этот принцип можно выразить также как условие минимума любого из термодинамических потенциалов: внутренней энергии U, энтальпии H, энергии Гиббса G, энергии Гельмгольца А при условии постоянства соответствующих параметров состояния, включая число молей каждого компонента.Фазовые равновесия могут быть стабильными и метастабильными. Те и другие являются локально устойчивыми, то есть устойчивыми по отношению к малым возмущениям параметров состояния - температуры, давления, состава (концентраций компонентов). Метастабильные фазовые равновесия отличаются тем, что они неустойчивы к некоторым конечным изменениям этих параметров, ведущим, в частности, к переходу к другим фазам. Например, пересыщенный раствор или переохлажденный расплав неустойчивы по отношению к кристаллической фазе. Поскольку метастабильное состояние системы локально устойчиво, переход к стабильному состоянию требует преодоления некоторого активационного барьера и протекания процесса зародышеобразования (см. Зарождение новой фазы).

Следует отметить некоторые особенности метастабильных фаз: при одной и той же температуре давление пара выше над метастабильной фазой, чем над стабильной; при одном и том же давлении температура плавления метастабильной фазы ниже, чем стабильной; растворимость метастабильной фазы при постоянных давлении и температуре выше, чем стабильной. Последнее справедливо как для жидких, так и для твердых растворов.Критерий достижения фазового равновесия. Наиболее общий критерий достижения фазового равновесия - сходимость значений CB-B системы при их измерении, если подходить к состоянию фазового равновесия сверху (со стороны более высоких температур) и снизу (со стороны низких температур). Достижение фазового равновесия или хотя бы приближение к нему - важнейший вопрос при изучении диаграмм состояния, в том числе диаграмм растворимости, диаграмм плавкости, диаграмм давления пара, а также в физико-химическом анализе. При исследовании растворимости для достижения фазового равновесия применяют длительную (от нескольких часов до нескольких месяцев) выдержку образца с перемешиванием в термостате. В случае образования в системе твердых растворов рекомендуется подход к равновесию сверху, от более высоких температур, сочетающий быстрое охлаждение с целью получения мелких кристаллов и интенсивное перемешивание. При исследовании систем методом термического анализа обычно используют образцы, полученные сплавлением компонентов с последующим медленным охлаждением. В случае образования в системе твердых растворов и инконгруэнтно плавящихся фаз, а также фаз, разлагающихся в твердом состоянии, требуется проведение предварительного отжига образца при фиксированной температуре - от нескольких часов до нескольких месяцев. Для ускорения отжига сплавленных образцов рекомендуется предварительное быстрое охлаждение расплава.