∆
(450) = -572390-450*(-565,32)=-317,996 кДжПри увеличении температуры на 152 К, энергия Гиббса увеличилась на 87,194 кДж, отсюда следует, что чем больше температура, тем больше энергия Гиббса. В закрытой системе изобарно-изотермический процесс остался самопроизвольным, т.к. ∆G<0. Дальнейшее повышение температуры не выгодно, т.к. ∆G стремится к нулю и процесс от самопроизвольного перейдет в равновесный, а затем в не самопроизвольный.
Расчет изохорно-изотермического потенциала (DF):
а) в стандартных условиях
1 способ:
∆F = ∆U-T∆S
∆F(298)=-571130-298*(-581,79)=-397,76 кДж
2 способ:
∆F(298)=∆G-∆nRT
∆F(298)=-405,13-(-3)*298*0,008314=-397,7 кДж
%ош.=((-397,76+397,7)/(-397,76))*100=0,02%,
т.к процент ошибки очень мал, следовательно, можно использовать для расчета оба метода.
Вывод: В закрытой системе при стандартных условиях изохорно-изотермический процесс будет протекать самопроизвольно, т.к. ∆F<0.
б) при заданной температуре
1 способ:
∆F(450)= -561170-450*(-565,32)=-306,78 кДж
2 способ:
∆F(450)=-317,996-(-3)*450*0,008314=-306,78 кДж
%ош.=((-306,78-306,78)/(-306,78))*100=0%,
т.к процент ошибки равен нулю, следовательно, можно использовать для расчета оба метода.
Вывод: При увеличении температуры энергия Гельмгольца увеличилась. В закрытой системе изохорно-изотермический процесс будет протекать самопроизвольно.
Вывод:
Т, К | ∆Н, кДж | ∆U, кДж | ∆G,кДж/моль | ∆F, кДж | ∆S, Дж |
298 | -578,56 | -571,13 | -405,19 | -397,76 | -581,79 |
450 | -572,39 | -561,17 | -317,996 | -306,78 | -565,32 |
С увеличением температуры тепловые эффекты изобарно-изотермического и изохорно-изотермического процессов увеличились.
В данной работе ∆Н, ∆S, ∆G получились отрицательными, отсюда следует, что процесс протекает самопроизвольно, но при невысоких температурах.
При увеличении температуры энергия Гиббса и энергия Гельмгольца увеличились, значит система стремиться к равновесию (в условиях равновесия ∆F, ∆G достигают минимума).
2. Задание: Определить ΔH, ΔU, ΔS, ΔF, ΔG, реакции при постоянном давлении P=1.013 * 105 Па.
СdO(т) + H2SO4(ж) = CdSO4 (т) + H2O (г)
Реакция протекает при температуре 511 градусов Цельсия .
Исходные данные
Вещест-во | ΔHf˚298кДж/моль | S˚298Дж/моль*К | ΔGf˚298кДж/моль | Ср298Дж/моль*К | Коэф. уравненияСр˚= f(T) | ||
a | b * 103 | c΄ * 10-5 | |||||
H2O | -241,81 | 188,72 | -228,61 | 33,61 | 30,00 | 10,71 | 0,33 |
CdO | -258,99 | 54,81 | -229,33 | 43,64 | 48,24 | 6,38 | -4,90 |
H2SO4 | -813,99 | 156,90 | -690,14 | 138,91 | 156,9 | 28,3 | -23,46 |
CdSO4 | -934,41 | 123,05 | -828,88 | 99,62 | 77,32 | 77,40 | - |
2.1 Расчёт теплового эффекта реакции
Расчёт теплового эффекта реакции в изобарном процессе в стандартных условиях
ΔНr˚ (298) = (ΔНf˚ (298)CdSO4 + ΔНf˚ (298)H2O) – (ΔНf˚ (298)CdO+ ΔНf˚ (298)H2SO4)
ΔНr˚ (298) = (-934,41 – 241,81) – (-258,99 – 813,99) = -103,24 кДж.
Вывод: При реакции в стандартных условиях ,произошло выделение тепла в количестве 103,24 кДж как следствие реакция является экзотермической.
Расчёт теплового эффекта реакции в изобарном процессе при заданной температуре
ΔH(T) = ΔНr˚ (298) +
;Δa = ( ΔaCdSO4+ ΔaH2O)- ( ΔaCdO+ ΔaH2SO4)
Δa = (77,32+30,00) – (48,94+156,90) = -97,82 ;
Δb = (ΔbCdSO4+ ΔbH2O)- (ΔbCdO+ ΔbH2SO4)
Δb = (77,40+10,71) – (6,38+28,30) = 53,43 * 10-3
Δc΄ =( Δc΄CdSO4+ Δc΄H2O)- (Δc΄CdO+ Δc΄H2SO4)
Δc΄ = (0 + 0.33) – (-4,90-23,46) = 28,69 * 105
Δc = 0, т.к. все вещества неорганические.
ΔH(511) = -103,24 * 103 +
== -103,24 * 103 + (-97,82) * (511-298) +
* (5112 – 2982) + -103240 – 20835,66 + 4603,45 + 4050,80 = -115,42 kДж.Вывод: Увеличение температуры привело к увеличению количества теплоты выделившегося в следствии реакции.
Расчёт теплового эффекта реакции в изохорном процессе в стандартных условиях
ΔU = ΔН – ΔnRT
Δn = Δnкон. – Δnнач
Δn=1-0=1
Газовая постоянная R = 8.314 Дж/моль*К
ΔU(298)= ΔНr˚ (298) –Δn*R*T
ΔU(298) = -103,24 * 103 -1 * 8,314 * 298 = -103240 – 2477,57 = -105,72 кДж.
Вывод: Внутренняя энергия реакции в изохорном процессе составила 100,76 килоджоуля.
Расчёт теплового эффекта реакции в изохорном процессе при заданной температуре
ΔU(511)= ΔНr˚ (511) –Δn*R*T
ΔU(511) = -115,42 * 103 - 1 * 8,314 * 511 = -115420– 4248,45= - 119,67 кДж.
Вывод: Как и в изобарном процессе увеличение температуры приводит к увеличению внутренней энергии реакции на 18,91 кДж.
2.2 Определение направления протекания химического процесса
Определение направления протекания данной реакции в изолированной системе
Определение направления протекания реакции в стандартных условиях
ΔS˚ (298) = (S(298)Cd SO4 + S(298)H2O) – (S(298)Cd O + S(298)H2SO4)
ΔS˚ (298) =(123,05+188,72)-( 54,81+156,90)= 100,06
Вывод: Так как энтропия S больше ноля 100,06>0 то процесс реакции в изолированной системе протекает самопроизвольно без внешнего воздействия. Определение направления протекания реакции при заданной температуре.
ΔS(T) = ΔS˚ (298) +
;ΔS(511) = 100,06 +
= 100,06 – 97,82 + 53,43 * 10-3 + 28,69 * 105 = 100,06 – 97,82 + 53,43 * 10-3 * (511-298) + * = 121,66Вывод: Изменение температуры привело к увеличению энтропии по сравнению с процессом при стандартных условиях . Следовательно повышение температуры ведёт к увеличению неупорядоченности и увеличению количества соударений молекул при реакции.
Определение направления протекания химического процесса в закрытой системе
Расчёт изобарно – изотермического потенциала в стандартных условиях
ΔGr˚ (298) = (G(298)Cd SO4 + G(298)H2O) – (G (298)Cd O + G(298)H2SO4)
ΔGr˚ (298)= (-823,88 – 228.61) – (-229,33 – 690.14) = -133,02 кДж/моль.
Вывод: Изобарно – изотермический потенциал показывает что процесс в закрытой системе идёт самопроизвольно ΔGr˚ < 0 ; -133,02<0 .
Произведем расчет изобарно – изотермического потенциала по другой формуле:
ΔGr˚ (298) = ΔНr˚ (298) - Т* ΔS˚ (298)
ΔGr˚ (298) = -103,24 * 103 – 298 * 100,06 = -133,06 кДж/моль.
Найдем процент ошибки:
% ошибки =
Расчет можно производить любым способом, т.к. процент ошибки не существенен. Расчёт изобарно – изотермического потенциала при заданной температуре
ΔGr˚ (511) = ΔНr˚ (511) - Т* ΔS˚ (511)
ΔGr˚ (511) = -119,46 * 103 – 511 * 121,66 = -181,63 кДж/моль.
Вывод: Увеличение температуры никак не повлияло на процесс реакции в закрытой системе, она по прежнему идёт самопроизвольно ΔGr˚ < 0; -181,63<0. Расчёт изохорно – изотермического потенциала в стандартных условиях.
ΔF(298) = ΔU(298) – T* ΔS˚ (298)
ΔF(298) = -105,72 * 103 – 298 * 100,06 = -135,53 кДж.
Вывод: Изохорно – изотермический потенциал показывает что процесс в закрытой системе идёт самопроизвольно ΔF< 0 ; -135,53<0
Расчёт изохорно – изотермического потенциала при заданной температуре
ΔF(511) = ΔU(511) – T* ΔS˚ (511)
ΔF(511) = - 123,70 * 103 – 511 *121,66 = -185,87кДж.
Вывод: Изменение температуры привело к уменьшению потенциала по сравнению с процессом при стандартных условиях, а это означает что глубина реакции в закрытой системе увеличилась ΔF< 0 ; -185,87>0.
Вывод
Рассмотренная реакция оксида кадмия и серной кислоты идёт самопроизвольно на это указывают все характеристики реакции, а рассмотренное увеличение температуры реакции её ничуть не замедляет. Всё это позволяет сделать вывод о том что увеличение температуры реакции позволяет увеличить её глубину и полноту. При этом реакция останется самопроизвольной.
T, K | ΔH, кДж | ΔU, кДж | ΔS, | ΔG, кДж/моль | ΔF, кДж |
298 | -103,24 | -105,72 | 100,06 | -133,02 | -135,53 |
511 | -115,42 | -119,67 | 121,66 | -181,63 | -185,87 |