Смекни!
smekni.com

Определение состава стиральных порошков (стр. 5 из 10)

4. Хроматография - физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами - неподвижной и подвижной (элюент), протекающей через неподвижную. Хроматографический анализ является критерием однородности вещества: если каким-либо хроматографическим способом анализируемое вещество не разделилось, то его считают однородным (без примесей).

Принципиальным отличием хроматографических методов от других физико-химических методов анализа является возможность разделения близких по свойствам веществ. После разделения компоненты анализируемой смеси можно идентифицировать (установить природу) и количественно определять (массу, концентрацию) любыми химическими, физическими и физико-химическими методами.

Хроматография широко применяется в лабораториях и в промышленности для качественного и количественного анализа многокомпонентных систем, контроля производства, особенно в связи с автоматизацией многих процессов, а также для препаративного (в т. ч. промышленного) выделения индивидуальных веществ (например, благородных металлов), разделения редких и рассеянных элементов.

В некоторых случаях для идентификации веществ используется хроматография в сочетании с другими физико-химическими и физическими методами, например с масс-спектрометрией, ИК-, УФ-спектроскопией и др.

5.Капиллярный электрофорез. Капиллярный электрофорез – это метод анализа сложных смесей, использующий электрокинетические явления – электромиграцию ионов и других заряженных частиц и электроосмос – для разделения и определения компонентов. Эти явления возникают в растворах при помещении их в электрическое поле, преимущественно, высокого напряжения. Если раствор находится в тонком капилляре, например, в кварцевом, то электрическое поле, наложенное вдоль капилляра, вызывает в нем движение заряженных частиц и пассивный поток жидкости, в результате чего проба разделяется на индивидуальные компоненты, так как параметры электромиграции специфичны для каждого сорта заряженных частиц. В то же время, возмущающие факторы, как то: диффузионные, сорбционные, конвекционные, гравитационные и т.п., в капилляре существенно ослаблены, благодаря чему достигаются рекордные эффективности разделений.

Система капиллярного электрофореза "Капель" предназначена для количественного и качественного определения состава проб веществ в водных и водно-органических растворах методом капиллярного электрофореза.

Метод капиллярного электрофореза с успехом применяется для анализа разнообразных веществ и объектов: катионов металлов, неорганических и органических анионов, аминокислот, витаминов, наркотиков, пигментов и красителей, белков, пептидов, анализа фармпрепаратов и пищевых продуктов. А также для контроля качества вод и напитков, технологического контроля производства, входного контроля сырья, в криминалистике, медицине, биохимии, в том числе, для целей расшифровки генетического кода живых организмов и т.д.

Мы перечислили основные виды анализа физико-химических свойств веществ, у всех у них есть свои недостатки и достоинства. Мы же хотели провести анализ стиральных порошков используя рентгенофлуоресцентный спектрометр.


2. Рентгенофлуоресцентный анализ

2.1 История создания РФА

8 ноября 1895 года Вильгельм Конрад Рентген - профессор университета баварского города Вюрцбурга на юге Германии совершенно неожиданно сделал открытие, принесшее ему мировую известность. 27 ноября того же года шведский изобретатель и промышленник Альфред Бернхард Нобель подписал в Париже завещание. Этим судьбоносным событиям довелось встретиться через пять лет. Первую в истории Нобелевскую премию по физике (1901 г.) присудили 56-летнему В.Рентгену за сделанное пятью годами ранее открытие лучей, которые носят его имя (сам ученый назвал их Х-лучами). К тому времени Рентген был известным ученым, профессором Мюнхенского университета и директором Физического института.

Слово "рентген" уже стало нарицательным, тем не менее, история открытия рентгеновских лучей, условия и методы работы их первооткрывателя и последующие открытия продолжают интересовать многих. Историки науки установили, что излучение, возникающее в катодно-лучевой трубке, многократно наблюдалось прежде, до открытия Рентгена. То есть Рентген был не первым ученым мира, который исследовал так называемые катодные лучи. Во второй половине XIX в. катодные трубки были во всех крупных физических лабораториях, и очень странно, что до Рентгена никто не замечал этих лучей. Еще в 1876 - 1880 гг. Эуген Гольдштейн изучал катодные лучи и наблюдал свечение некоторых солей.

Десять лет спустя, Томсон, проводя свои опыты с катодными лучами, также заметил, что стекло, помещенное более чем в метре от трубки, фосфоресцирует. Однако он не обратил на это должного внимания. Физики того времени по опыту хорошо знали, что около работающей катодной трубки нельзя оставлять фотоматериалы, ибо они засвечиваются. Например, в 1890 году в Америке был случайно получен рентгеновский снимок лабораторных предметов. А за 11 лет до Рентгена директор Бакинского реального училища Евгений Каменский описал лучи, обладающие фотохимическим действием. Секретарем Бакинского фотографического кружка Мишона производились даже опыты в области фотографии, аналогичные рентгеновским. К сожалению, опубликовано сообщение об этом было только в 1896 году в журнале "Природа и люди" N28. За 10 лет до опубликования открытия Рентгеном разрядами в вакуумных трубках начал интересоваться русский профессор Иван Павлович Пулюй. Он заметил, что эти лучи проникают через непрозрачные предметы и засвечивают фотопластинки. В 1890 году им были получены фотографии скелета лягушки и детской руки и даже опубликованы в европейских журналах. Однако дальнейшим изучением лучей он не занимался. Но факт остаётся фактом - известия об Х-лучах начали появляться еще за 10 лет до открытия Рентгена.

Эти и некоторые другие сообщения свидетельствуют о том, что ученые находились на пороге открытия. Последний, решающий шаг был сделан Рентгеном в 1895 г. Профессору Вильгельму Конраду Рентгену уже минуло 50 лет, когда он совершил свое открытие. Рентген сразу же поставил серию экспериментов и подробнейшим образом описал свойства вновь открытых лучей. Потому именно Вильгельм Конрад Рентген (1845-1923) вошел в историю, как первооткрыватель. Было это так...

Занимаясь исследованиями электрического разряда в стеклянных вакуумных трубках Крукса используя искровой индуктор с прерывателем, газоразрядную трубку и флуоресцирующий экран, Вильгельм Рентген заметил странное свечение кристаллов, лежавших на лабораторном столе. Он затемнил комнату и обернул газоразрядную трубку плотной непрозрачной черной бумагой. И тогда, к своему удивлению, он продолжал наблюдать бледно-зеленое свечение стоявшей неподалеку бумажной ширмочки, покрытой платиносинеродистым барием. Тщательнейшим образом проанализировав и устранив возможные причины ошибок Рентген установил, что свечение появлялось всякий раз, когда он включал трубку Крукса, что источником излучения является именно трубка, а не какая-нибудь другая часть цепи и что экран флуоресцировал даже на расстоянии почти двух метров от трубки, что намного превосходило возможности короткодействующих катодных лучей. Тень, которую отбрасывала на флуоресцирующий экран индукционная катушка, необходимая для создания разряда высокого напряжения, навела Рентгена на мысль об исследовании проникающей способности Х-лучей в различных материалах. Он обнаружил, что Х-лучи могут проникать почти во все предметы на различную глубину, зависящую от толщины предмета и плотности вещества. Натолкнувшись на неизвестное явление, ученый на протяжении семи недель в полном одиночестве работал в одной из комнат своей лаборатории, изучая свойства Х-лучей. Он велел приносить себе пищу в университет и поставить там кровать, чтобы избежать сколько-нибудь значительных перерывов в работе. Только в конце своего "одиночества" он приоткрыл тайну, сделав снимок в Х-лучах руки своей жены Берты с обручальным кольцом, показанный наряду с другими снимками в сообщении 28 декабря 1895 г.

Тридцатистраничный отчет Рентгена был озаглавлен "О новом виде лучей. Предварительное сообщение". Последние два слова выглядят, право же, лишними: по своему содержанию рукопись была куда весомее многих объемистых научных фолиантов. Ее вскоре издадут отдельной брошюрой, переведут на многие европейские языки. Очевидцев открытия не было. Сам Рентген не рассказывал об истоках опыта. Довольно замкнутый по натуре, он не любил репортеров. И сделал едва ли не единственное в жизни исключение, дав в самом начале 1896 г. интервью одной из парижских газет.

Счастье, явившееся столь неожиданно, ''великий жребий'', как позднее сказал Рентген, который ему выпал, он хотел заслужить как исследователь, представив совершенно безупречные результаты и еще около двух лет продолжал исследовать свойства лучей. В 1895-97 опубликовал 3 работы, содержавшие анализ свойств нового излучения, причем изучил его настолько основательно, что понадобилось более 10 лет, чтобы добавить что-либо к его выводам. "Впоследствии Рентгену не пришлось отказываться ни от одного слова, что было в его первых сообщениях", - писал немецкий физик Арнольд Зоммерфельд. Да и конструкции первых рентгеновских трубок в основных чертах сохранились до нашего времени…

По-видимому, первым открытие Рентгена в коммерческих целях применил Т.Эдисон: в мае 1896 г. он в Нью-Йорке организовал выставку, где желающие могли разглядывать на экране изображение своих конечностей в рентгеновских лучах. Но после того как его помощник умер от ожогов Х-лучами, Эдисон прекратил все опыты с ними. Однако, несмотря на очевидную опасность, работы с новыми лучами, расширяясь и углубляясь, продолжались.