1. Химия металлов
1.1 Общие сведения и классификация
Большинство химических элементов относятся к металлам.
В атомах металлов внешние электроны удерживаются значительно слабее, чем в атомах неметаллических элементов. Металлы, как правило, имеют низкие потенциалы ионизации и выступают в качестве восстановителей.
В соответствии с особенностями электронной структуры и положением в периодической системе (ПС) различают s-, p-, d-, f-металлы. К s-металлам относят элементы, у которых происходит заполнение внешнего s-уровня. Это элементы главных подгрупп I и II групп ПС – щелочные и щелочноземельные металлы. Они наиболее сильные восстановители среди металлов. К числу р-металлов относят элементы III – IV групп, находящихся в главных подгруппах и расположенных левее диагонали B-At. Металлические свойства этих элементов выражены гораздо слабее. Металлы IV – VIгрупп, примыкающие к диагонали B-At, типичные полупроводники (т.е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов – образование амфотерных гидроксидов. Наиболее многочисленны d-металлы. В ПС они расположены между s- и p-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства: 3d, 4d, 5d и 6d. Кроме Sc и Zn, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (OsO4). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, затем убывает. Эти Элементы типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы ПС (Cu-Ag-Au, Zn-Cd-Hgи т.д.). самая характерная особенность d-элементов – исключительная способность к комплексообразованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов.
Металлы с достраивающимися f-слоями образуют две группы очень похожих между собой элементов – лантаноидов и актиноидов.
Небольшое число металлов (Au, Ag, Pt, Hg) встречаются в природе в свободном состоянии. Большинство же находится в виде минералов и руд. Среди наиболее распространенных природных соединений металлов – оксиды, сульфиды, карбонаты, силикаты, сульфаты.
В промышленности металлы получают восстановлением соответствующих руд. Железо и сплавы на его основе традиционно называют черными металлами. Cu, Zn, Sn, Pb и некоторые другие относят к цветным металлам.
При н.у. все металлы – твердые кристаллические вещества, за исключением Hg – тяжелой подвижной жидкости (Тпл=-39°С).
1.2 Химия s-элементов
Щелочные металлы
Главная подгруппа I группы ПС, называется подгруппой щелочных металлов, включает Li, Na, K, Rb, Cs, Fr (радиоактивный с наименьшим периодом полураспада Т1/2=22 мин.). Название подгруппы – щелочные металлы – отражает характерные особенности химии этих элементов. Все они имеют один s-электрон на внешнем электронном слое и проявляют окислительное число +1. Единственный валентный электрон атомов щелочных металлов сравнительно слабо связан с ядром, поэтому потенциалы ионизации этих элементов невелики.
Физические свойства щелочных элементов приведены в таблице 1.
Таблица 1.
Элемент | Атомный номер | Относительная атомная масса | Атомный радиус, нм | Ионный радиус, нм | Энергия ионизации, эВ | Окраска пламени |
Li | 3 | 7 | 0.155 | 0.066 | 5.390 | Коричнево-красная |
Na | 11 | 23 | 0.189 | 0.095 | 5.138 | Желтая |
K | 19 | 39 | 0.236 | 0.133 | 4.339 | Фиолетовая |
Rb | 37 | 85 | 0.248 | 0.148 | 4.176 | Красная |
Cs | 55 | 133 | 0.268 | 0.169 | 3.893 | Фиолетовая |
В твердом состоянии щелочные металлы хорошо проводят электрический ток. Это типичные металлы. Они легкоплавки, быстро окисляются на воздухе (Cs со взрывом). Хранят щелочные металлы без доступа воздуха и влаги, чаще всего под керосином. Свойства щелочных металлов закономерно изменяются по группе с увеличением относительной атомной массы (таблица 2).
Таблица 2.
Элемент | tпл, °С | tкип, °С | Плотность, г/см3 |
Li | 180.5 | 1317 | 0.534 |
Na | 97.83 | 882.9 | 0.968 |
K | 63.55 | 760 | 0.862 |
Rb | 38.9 | 703 | 1.525 |
Cs | 28.55 | 667 | 1.9 |
В химическом отношении элементы главной подгруппы I группы схожи. Все они активны, причем с увеличением атомного номера химическая активность металлов усиливается. При взаимодействии с неметаллами щелочные металлы образуют соединения с ионной связью.
В электрохимическом ряду напряжений металлов все щелочные металлы стоят значительно левее водорода, причем с увеличением атомного номера (и уменьшением потенциала ионизации) электрохимическая активность металлов увеличивается. Исключение составляет Li – расположение на левом фланге электрохимического ряда напряжений металлов обусловлено исключительно высокой энергией гидратации Li, максимальной среди металлов.
Натрий и калий
Натрий – серибристо-белый металл. В природе встречается только в виде соединений. По распространенности в земной коре натрий занимает шестое место (2.5% по массе). Минералы натрия очень разнообразны. Наиболее важные из них – галит NaCl (поваренная соль), мирабилит Na2SO4×10H2O (глауберова соль), натриева селитра NaNO3.
Калий также серибристо-белый металл. Калий занимает седьмое место по распространенности в земной коре (~ 2.5% по массе), вслед за натрием. В свободном состоянии в природе не встречается, как и натрий. Важнейшие минералы калия следующие: сильвин KCl (и смешанные калийнатриевые и калиймагниевые минералы), сильвинит (K, Na)Cl, карналлит KCl×MgCl2×6H2O, каинит KCl×MgSO4×3H2O.
Химические свойства натрия и калия похожи, причем активность калия несколько выше. Оба они отдают внешний s-электрон с образованием ионных соединений.
С кислородом в зависимости от условий натрий и калий образуют оксиды Na2O, K2Oили пероксиды Na2O2, K2O2.
2Na + О2 = Na2O2 (горение),
2Na2O2 = 2Na2O + О2 (нагревание)
Взаимодействие натрия и калия с кислородом протекает очень бурно. С водородом натрий при 400 °С, а калий при 200 °С образуют солеобразные гидриды:
2Na + H2 = 2NaH
Здесь водород выступает в качестве аналога галогенов, образуя ион Н-.
При обычной температуре натрий горит в атмосфере фтора и хлора:
2Na + Cl2 = 2NaCl
Реакция калия в аналогичных условиях протекает со взрывом.
Растирание натрия или калия с серой приводит к образованию полисульфидов:
2Na + nS = Na2Sn (n от 2 до 5)
Натрий и калий легче воды, поэтому кусочки металлов в воде плавают, бурно реагируя:
2K + 2H2O = 2КОН + Н2↑
Выделяющейся водород воспламеняется. В результате реакции получают сильные основания (щелочи). Загоревшийся натрий и калий нельзя тушить водой!
Сплавы натрия и калия со ртутью (амальгамы) – сильные восстановители. Химические реакции амальгированных щелочных металлов протекают так же, как и с чистыми элементами, но гораздо спокойнее без загорания и взрыва. Это свойство амальгам широко используют в лабораторной практике.
Гидроксиды калия и натрия – важнейшие химические соединения щелочных металлов. В промышленности получают электролизом растворов хлоридов:
NaClDNa+ + Cl-
1½2H2O + 2e- = 2OH- + H2#
1½2Сl- - 2е- = Сl2#
2H2O + 2Сl-электролиз 2OH- + H2#+ Сl2#
2H2O + 2NaСlэлектролиз 2NaOH + H2#+ Сl2#
Полученный продукт – технический едкий натр – содержит 92-95% NaOH, остальное NaCl и Na2CО3.
В лабораторных условиях раствор гидроксида натрия можно получить, используя соду и известь:
Na2CО3 + Са(ОН)2 = 2NaOH + СaCО3¯
Щелочи идут на приготовление электролитов щелочных аккумуляторов, на производство мыла, красок, целлюлозы.
При реакции щелочей с кислотами образуются соли:
NaOH + HCl = NaCl + H2O
Реакции такого типа называют реакциями нейтрализации.
Как сильные основания щелочи вытесняют более слабые основания солей:
NaOH + СоCl2 = 2NaCl + Со(ОН)2¯
Амфотерные гидроксиды растворяются в избытке щелочи:
NaOH + Al(OH)3 = Na[Al(OH)4]
При этом образуются комплексные гидроксосоли, содержащие сложный анион [Ме(OH)n]m-. Применение натриевых солей обширно. Помимо поваренной соли следует назвать карбонат натрия (сода) Na2CО3, гидрокарбонат натрия (питьевая сода) NaНСО3, нитрат натрия (силитра) NaNО3. Растворимые соединения калия важные удобрения, увеличивающие способность к фотосинтезу. KClO3 и КNО3 используют в пиротехнике, обе соли сильные окислители.
Рубидий и цезий используют для изготовления фотоэлементов.
Щелочноземельные металлы
К Щелочноземельным металлам относят элементы, главной подгруппы II группы ПС: Ca, Sr, Ba, Ra. Кроме них в эту группу входят Be и Mg. На внешнем слое атомов щелочноземельных металлов два s-электрона. Во всех соединениях проявляется степень окисления +2. Активность металлов растет с увеличением атомного номера. Все эти элементы – типичные металлы, по свойствам близкие к щелочным. Атомные и ионные радиусы элементов главной подгруппы II группы значительно меньше радиусов соседних щелочных металлов. Это связано с большим зарядом и полным заполнением внешних электронных s-слоев щелочноземельных металлов. Сравнительные характеристики щелочноземельных металлов приведены в табл. 3