Смекни!
smekni.com

Закономерности образования и роста покрытий (стр. 2 из 3)


В случае сферической частицы значение свободной энергии Гиббса можно представить как сумму ее поверхностной и объемной составляющих:

G=
4рR3 /3 -
4рR2 , (2.3)

где

- удельная объемная свободная энергия;
- поверхностная энергия; R- размер частиц.

Критическому размеру зародыша Rкр, как уже отмечалось, соответствует максимуму свободной энергии. Тогда для R=Rкр выполняется условие

d (

G)/ dR=0.

После дифференцирования (7.3) получим уравнение

, в результате решения которого имеем Rкр= 2
/
.

Оценки показывают, что при низкой температуре конденсации критический размер зародыша может составлять Rкр = (5…10).10-10 м, т.е. иметь размеры нескольких атомов. Отметим, что в этом случае при присоединении следующего атома ДG будет изменяться дискретно. Вместе с тем термодинамическая теория предполагает непрерывное изменение поверхностной энергии и свободной энергии Гиббса. Следовательно, для описания частиц малого размера это условие не всегда выполняется. По этой причине более строгой и универсальной является статистическая теория зародышеобразования. В данной теории, исходя из параметров межатомного взаимодействия отдельных атомов, особенностей их поведения определяются вероятности роста и распада кластеров. К недостаткам данной теории можно отнести сложность расчета кластеров, состоящих из 6 и более атомов.

Зародышеобразование по флуктуационному механизму протекает в случае, когда на поверхности подложки образуется адсорбционная фаза с плотностью, превышающей критическую,

. При этом флуктуация плотности

а~
а.

В общем случае критическая плотность адатомов зависит от природы материала подложки, ее температуры.

При больших временах осаждения, когда на поверхности образуется равновесная плотность адатомов, условие зародышеобразования имеет вид

.

Тогда плотность потока, при которой протекает процесс зародышеобразования, может быть получена из условия

(2.4)

Данное условие графически представлено на рисунке 2.4.

Рисунок 2.4 – Область режимов осаждения, при которых протекает зародышеобразование

Анализ выражения (2.4) показывает следующее:

1) существуют некоторые пороговые значения плотности потока падающих частиц jк, ниже которых зарождение конденсированной фазы не происходит;

2) пороговое значение jк зависит от температуры; при снижении температуры поверхности подложки пороговое значение jк уменьшается.

Аналогичные выводы можно сделать по отношению к температуре. Максимальное значение температуры Tк, при которой происходит конденсация, получило название критической температуры или температуры Кнудсена. Значение Tк зависит, в основном, от природы атомов металла, плотности падающих частиц, состояния поверхности подложки. Наличие в падающем на поверхность потоке заряженных частиц, атомных ассоциатов (частиц из нескольких атомов) способствует процессам зародышеобразования, т. к. увеличивается фа и снижается вероятность перехода частиц в газовую фазу.

В процессе дальнейшего осаждения атомов происходит рост образовавшихся зародышей. Присоединение атомов к зародышам осуществляется двумя способами:

1). непосредственный захват атомов из газовой фазы. Данный перенос является неопределяющим на начальных стадиях осаждения, когда размер зародыша мал. Он доминирует на поздних стадиях роста островковой пленки. Доля атомов, присоединяемых к зародышу таким путем,

б =(NзSr)-1,

где Sr~рR23 –средняя площадь отдельного зародыша; R3 – радиус зародыша; N-плотность зародышей.

Осажденные на поверхности атомы в условиях проявления сильной связи их с поверхностью формируют купол частицы, определяют ее внешнюю форму (сферическую, эллипсовидную, пирамидальную или какую то другую).

2). Захват зародышем диффундирующих по поверхности подложки адсорбированных атомов. Зародыши являются стоком диффундирующих атомов. Вокруг зародыша образуется зона с градиентом плотности адсорбированных атомов (рисунок 2.5), который и определяет направление и плотность потока диффузии. Ширина градиентной зоны соизмерима с длиной диффузионного пробега адатомов металла.

Для характеристики процесса осаждения вводят в рассмотрение зону захвата зародыша А(t,Rз) – эффективный участок площади поверхности, при попадании на который атом неизбежно конденсируется, т.е. захватывается зародышем. С учетом возможности одновременного роста зародышей по двум рассмотренным выше механизмам эффективная площадь зоны захвата приближенно может быть оценена с помощью выражения


.

Для характеристики кинетики процесса осаждения атомов вводят коэффициент конденсации. Различают:

- мгновенный коэффициент конденсации:

;
;
,

где

- плотность потока атомов, присоединенных к растущим зародышам в данный момент времени за дифференциально малый его промежуток;
- плотность потока атомов, реиспаренных в газовую фазу с поверхности;

-интегральный коэффициент конденсации

,

где N, Nк– число атомов, поступивших на поверхность и претерпевших конденсацию на поверхности в течение времени t соответственно.

В общем случае значение

зависит от плотности зародышей и средней площади их зоны захвата:

,

где

–коэффициент, который учитывает перекрытие зон захвата.

Как правило, на поверхности неорганических материалов зародыши образуются мгновенно, и их плотность в процессе роста меняется незначительно.При осаждении же на поверхность полимерных материалов вследствие подвижности адсорбционно-активных групп в поверхностном слое полимера плотность зародышей, как правило, возрастает в процессе осаждения. Характер изменения плотности зародышей в процессе вакуумной металлизации полимеров сказывается на зависимости коэффициента конденсации от температуры поверхности подложки. Отметим, что для неорганических материалов коэффициент конденсации при нагревании подложки монотонно уменьшается вследствие возрастания вероятности реиспарения адатомов.

При осаждении атомов металла на поверхности неполярных полимеров при T>Tс (Tс–температура стеклования полимера) вследствие сегментальной подвижности макромолекул на поверхности возрастает плотность активных центров, имеющих высокий потенциал взаимодействия и способных выполнять роль стоков адсорбированных атомов. Как следствие этого, при нагревании полимера имеет место возрастание коэффициента конденсации. При Т>Тmax преобладающим становится процесс термической активации процесса реиспарения, и в результате наблюдается снижение К. При достаточно высокой температуре полимера, когда происходит его плавление (Т > Тпл), резко возрастает адсорбционная активность поверхности, имеет место диффузия адатомов в объем подложки и наблюдается повышение коэффициента конденсации.

Кинетика конденсации атомов металла в условиях непрерывной генерации на поверхности зародышей, например, при металлизации полимеров, может быть описана в рамках релаксационно-диффузионной теории конденсации. В соответствии с представлениями данной теории полимер рассматривается как система связанных между собой макромолекул. Движение кинетических элементов макромолекул, их сложный химический состав порождают неоднородность адсорбционных свойств поверхности, их изменение во времени. Особый интерес представляет выход на поверхность участков макромолекул, которые обладают высокой активностью и способны при взаимодействии с адатомами металла образовывать достаточно стабильные комплексы. Эти комплексы можно рассматривать как потенциальные центры зародышеобразования конденсированной фазы. Основное уравнение релаксационно-диффузионной теории конденсации