В свете теории электролитической диссоциации можно дать определения основаниям, кислотам и солям как электролитам.
Основания – это электролиты, в результате диссоциации которых в водных растворах образуется только один вид анионов – гидроксид-анионы ОНˉ.
КОН = К+ + ОНˉ Са(ОН)2 = Са2+ + 2ОНˉ.
Кислоты – это электролиты, в результате диссоциации которых в водных растворах образуется только один вид катионов – катионы водорода Н+ (точнее – катионы гидроксония Н3О+).
Катион гидроксония образуется при взаимодействии Н+ с молекулой Н2О. в результате образуется еще одна ковалентная связь кислорода с водородом по донорно-акцепторному механизму:
Н+ + Н2О = Н3О+
Примеры диссоциации кислот:
HCl = H+ + Clˉ или HCl + H2O = H3O+ + Clˉ.
Многоосновные кислоты диссоциируют многоступенчато:
H2SO4 + H2O = H3O+ + HSO4ˉ
HSO4ˉ + H2O-H3O+ + SO42-
Соли – это электролиты, диссоциирующие в водном растворе на катионы металлов и анионы кислотного остатка.
Средние соли диссоциируют с образованием только катионов металла и анионов кислотного осадка, например:
Ba(NO3)2 = Ba2+ + 2NO3¯
Соли аммония вместо катиона металла содержат катион аммония.
Например:
NH4Cl = NH4 + Cl¯
Основные соли диссоциируют с образованием катионов металла, анионов OH¯ и анионов кислотного осадка.
Кислые соли диссоциируют с образованием катионов металла, катионов водорода (гидроксония) и анионов кислотного осадка, например:
Ca(HCO3)2 + 2H2O = Ca2+ + 3H3O+ + 2CO32-
Двойные соли – соли, в результате диссоциации которых образуются катионы нескольких металлов (или аммония какого-либо металла) и анионы одного кислотного остатка. Например, сульфат калия – хрома (хромокалиевые квасцы):
KCr(SO4)2 = K+ + Cr3+ + 2SO42-
Смешанные соли – соли, в результате диссоциации которых образуются катионы какого-либо металла и анионы нескольких кислотных остатков. Например, хлорид-гипохлорит кальция (хлорная известь):
CaClOCl = Ca2+ + Cl¯ + ClO¯
Электролитическая диссоциация – обратимый процесс. Обратный процесс – ассоциация ионов. При растворении одних электролитов равновесие диссоциации значительно смещено в сторону диссоциированных форм, в растворах таких электролитов диссоциация происходит почти полностью. Такие электролиты называют сильными. При растворении других электролитов диссоциация происходит в незначительной мере, такие электролиты называют слабыми электролитами.
Для количественной оценки силы электролита введено понятие степени электролитической диссоциации.
Степень электролитической диссоциации – отношение количества вещества электролита, распавшегося на ионы (νрасп) к количеству вещества электролита, поступившего в раствор (νобщ):
α = νрасп/νобщ, где α – степень ЭД, 0< α ≤ 1.
Степень электролитической диссоциации зависит от природы электролита, его концентрации в растворе и температуры. С разбавлением и с повышением температуры степень электролитической диссоциации возрастает.
Оценить силу различных электролитов можно, сравнивая степень их электролитической диссоциации при одинаковых условиях. Электролиты, степень диссоциации которых при 18 °С в растворах с концентрацией 0,1 моль/л электролита близка к 100% относят к сильнымэлектролитам. Это щелочи, большинство солей, некоторые неорганические кислоты (HClO4, HI, HBr, HCl, HNO3, H2SO4). Электролиты, степень диссоциации которых при 18 °С в растворах с концентрацией 0,1 моль/л электролита значительно меньше 100% относят к слабым электролитам. Это многие неорганические кислоты: H2S, HCN, HClO, практически все органические кислоты (HCOOH, CH3COOH, CH3CH2COOH), водный раствор аммиака, вода.
Диссоциация слабых электролитов – обратимый процесс. Поэтому силу электролита также можно охарактеризовать с помощью константы химического равновесия процесса диссоциации электролита – константы диссоциации. Константа диссоциации зависит от температуры, но не зависит от концентрации электролита. В этом ее преимущество по сравнению со степенью электролитической диссоциации. Чем больше значение константы диссоциации, тем сильнее электролит.
Механизм электролитической диссоциации веществ
Рассмотрим механизм электролитической диссоциации на примере диссоциации хлорида натрия NaCl в водном растворе.
Молекулы воды полярны, они представляют собой диполи: на одном конце диполя δˉ (частичный отрицательный заряд), на другом – δ⁺ (частичный положительный заряд). При контакте кристалла NaCl с водным раствором, водородные связи между молекулами воды, находящимися вблизи кристалла, разрушаются. Диполи воды ориентируются своими полюсами относительно ионов на поверхности кристалла: отрицательным полюсом диполя – к катионам натрия, положительным полюсом диполя – к анионам хлора. Происходит процесс соединения ионов соли с молекулами воды – гидратация ионов. Молекулы воды, притягивающиеся к ионам растворяемой соли, во много раз ослабляют притяжение ионов друг к другу. Постепенно гидратированные ионы разъединяются (рис. 1).
Гидратированные ионы – это ионы, химически связанные с молекулами воды.
рис. 1.Одним из важных факторов. Обуславливающих возможность диссоциации электролитов в водных растворах, является высокая диэлектрическая проницаемость воды[3]. В ходе диссоциации ионных связей энергия затрачивается, а в ходе гидратации – выделяется. Если энергия гидратации с избытком компенсирует затраты энергии диссоциации ионных связей, то растворение таких электролитов – экзотермический процесс. Если энергия гидратации не полностью компенсирует затраты энергии диссоциации ионных связей, растворение таких электролитов будет эндотермическим процессом.
Электролитическая диссоциация электролитов с ковалентной полярной связью включает в себя еще и процесс поляризации полярной молекулы. Рассмотрим схему данного процесса на примере электролитической диссоциации молекул хлороводорода в воде (рис. 2.).
рис. 2.При растворении хлороводорода в воде диполи воды ориентируются относительно диполя НС1. Под действием диполей воды происходит поляризации связи Н-С1, в результате которой общая электронная пара полностью смещается к атомной частице хлора. Связь Н-С1 диссоциирует, и образуются гидратированные ионы. Ионы Н⁺ взаимодействуют с молекулами воды с образованием иона гидроксония Н3О⁺.
1.3 Гидролиз солей
Гидролиз солей – обменная реакция некоторых солей с водой, в результате такой реакции происходит смещение равновесия диссоциации воды.
Вода в незначительной мере диссоциирует на ионы:
Н2О-Н⁺ + ОНˉ
Произведение равновесных концентраций ионов Н⁺ и ОНˉ называется ионным произведением воды Kw. При стандартных условиях оно составляет величину 10ˉ14.
В нейтральном растворе [Н⁺]=[ОНˉ]= 10ˉ7моль/л.
Рассмотрим взаимодействие анионов с водой. Анионы, образовавшиеся при диссоциации солей и способные к связыванию с ионами Н⁺, вызывают смещение равновесия диссоциации воды, так как они взаимодействуют с молекулами воды. Например:
СО32ˉ+Н2О -НСО3ˉ+ОНˉ
В растворе остается избыток гидроксид-анионов ОНˉ, в этом случае среда будет щелочной (рН>7).
Рассмотрим процесс взаимодействия катионов с молекулами воды. Катионы, образовавшиеся при диссоциации солей и способные к связыванию с ионами ОНˉ, вызывают смещение равновесия диссоциации воды, так как они взаимодействуют с молекулами воды:
А13⁺+Н2О-А1ОН2⁺+Н⁺
В растворе остается избыток катионов водорода Н⁺ (точнее, катионов гидроксония), в этом случае среда будет кислой (рН<7).
При наличии в растворе многозарядных ионов (2+, 3+, 2 – .3-) гидролиз происходит ступенчато. При этом надо учитывать, что гидролиз при обычных условиях в достаточной мере осуществляется только по первой ступени, а по второй, третьей ступени – в очень незначительной степени.
Соли сильного основания и сильной кислоты гидролизу не подвергаются, так как нет связывания ионов, не происходит образования слабых электролитов. В этом случае реакция среды в растворе – нейтральная.
Соли слабого основания и сильной кислоты подвергаются гидролизу по катиону, реакция среды в растворе, в таком случае, кислая.
Гидролиз соли сильного основания и слабой кислоты происходит по аниону, реакция среды в растворе – щелочная.
Гидролиз соли слабого основания и слабой кислоты происходит как по аниону, так и по катиону. Реакция среды в этом случае зависит от соотношения констант диссоциации соответствующих основания и кислоты.
Усилить гидролиз можно разбавлением раствора, нагреванием системы.
2. Химические реакции
Химические реакции (химические явления) – это процессы, в результате которых одни вещества превращаются в другие.
Признаками осуществления химических реакций являются:
– изменение цвета;
– выделение газа;
– выпадение или растворение осадка;
– появление или исчезновение запаха;
– выделение тепла и света.
Перечисленные признаки реакций можно обнаружить непосредственно в ходе визуального наблюдения. Существуют и другие признаки осуществления реакций, которые нельзя заметить визуально, но можно обнаружить с помощью приборов.