Пористые сферические гранулы размером более 500 мкм, спеченные между собой без значительной деформации их формы, представляют собой прекрасные матриксы для клеточных культур. Предварительные испытания invivoматриксов с мезенхимальными стволовыми клетками (совместно с МНИОИ им. П.А.Герцена) продемонстрировали их перспективность для реконструкции костных дефектов [371,372]. Восстановление кортикальной костной ткани крыс происходило уже на 3 неделе, по сравнению с 5-6 неделями для животных без имплантированных матриксов. Такая керамика является также прекрасным средством доставки лекарственных препаратов, которые могут быть введены во внутригранульные тонкие поры.
Ряд интересных материалов для применения в стоматологии и хирургии разработан в России ЗАО Полистом. Созданы композиционные материалы ГА с коллагеном, обладающие гемостатическим и ранозаживляющим действием [373]. При хирургическом лечении некоторых стоматологических заболеваний (пародонтит, цистэктомия) находит применение метод направленной регенерации тканей, заключающийся в раздельной регенерации мягких и твердых тканей. Для этой цели используют биорезорбируемые ГА-содержащие мембраны, разработанные ЗАО Полистом. Такие мембраны успешно применены в операциях по устранению дефектов верхнего нёба и альвеолярного отростка.
Стратегия и опыт применения фосфатно-кальциевых покрытий на металлических имплантатах в ортопедии подробно рассмотрены в монографии А.В.Карлова и В.П.Шахова [11]. Установлено, что прочность фиксации титановых имплантатов с покрытиями примерно в 4 раза превосходит таковую для имплантатов без покрытия. Одновременно уменьшается количество инфекций стержневого тракта. Усиление остеоинтеграции наблюдалось и для остеопорозной кости. Ортопедические имплантаты с фосфатно-кальциевыми покрытиями применяются в медицинской практике [43].
Фосфатно-кальциевые цементы - коммерциализованная продукция, широко применяемая в стоматологии и костной хирургии. Известно, по крайней мере, 11 марок доступных на рынке цементов (Biobone, BiocementD(Германия), Biopax(Япония) и др.), различающихся фазовым составом, временем схватывания и механическими свойствами [28]. Важной задачей является регулирование пористости и размера пор в цементных материалах, в частности при создании средств доставки лекарственных препаратов и матриксов для клеточных технологий. Желательно совершенствование технологических характеристик цементов, в частности инжектируемости, формуемости цементной пасты, простоты дозирования и манипулирования с ней в течение заданного периода времени, обрабатываемости стоматологическим инструментом и, особенно, механических свойств.
Можно привести и другие примеры, демонстрирующие несомненную перспективность разработок в области фосфатно-кальциевых материалов для медицины. Возможно, в качестве наиболее актуальных направлений дальнейших исследований и разработок можно рассматривать синтез наноструктурированных материалов, особенно подобных по структуре и свойствам костной ткани, гибридных органо-неорганических фаз с участием фосфатов кальция, совершенствование технологии и свойств цементов для пластики и регенерации, то есть обновления свойств с помощью естественных механизмов, костной ткани in situ, создание новых материалов и технологии изделий (матриксов) из них, предназначенных для наиболее интенсивно развивающегося в последнее время направления в регенеративной хирургии - инженерии костной ткани с применением клеточных технологий [373]. Важным направлением является создание способов функционализации поверхности фосфатно-кальциевых материалов для придания ей специфических качеств, например селективности взаимодействия с протеинами, пептидами, клетками. Все отмеченное требует дальнейших углубленных исследований не только в области химии, технологии и биологического поведения материалов, но также и развития методов их аттестации и диагностики [374,375].
1. Орловский В.П., Суханова Г.Е., Ежова Ж.А., Родичева Г.В. Гидроксиапатитная биокерамика // Ж. Всес. хим. об-ва им. Д.И.Менделеева. 1991. Т. 36, № 10. С. 683-690.
2. Третьяков Ю.Д. Развитие неорганической химии как фундаментальной основы создания новых поколений функциональных материалов // Успехи химии. 2004. Т. 73, С. 899-916.
3. Вересов А.Г., Путляев В.И., Третьяков Ю.Д. Достижения в области кальцийфосфатных биоматериалов // Российский химический журнал. 2000. Т. XLIV, №6 (ч.2). С. 32-46.
4. Orlovskii V.P., Barinov S.M. Hydroxyapatite and hydroxyapatite-matrix ceramics: A survey // Russian J. Inorg. Chem. 2001. V.46, Suppl. 2. P. S129-S149.
5. Орловский В.П., Комлев В.С., Баринов С.М. Гидроксиапатит и керамика на его основе // Неорг. материалы. 2002. Т.38, № 10. С. 973-984.
6. Hench L.L. Bioceramics: From concept to clinic // J. Am. Ceram. Soc. 1991. V.74. P. 1487-1510.
7. Vallet-Regí M, Gonzáles-Calbert J.M. Calcium phosphates as substitution of bone tissue // Progress in Solid State Chem.2004. V. 32. P. 1-31.
8. Третьяков Ю.Д., Брылев О.А. Новые поколения неорганических функциональных материалов // Ж. Росс. хим. об-ва им. Д.И.Менделеева. 2000. Т.44, №4 (ч.1). С.10-20.
9. Власов А.С., Карабанова Т.А. Керамика и медицина // Стекло и керамика. 1993. №9-10. С. 23-25.
10. Швед С.И. Кальцийфосфатные материалы в биологических средах // Успехи современной биологии. 1995. Т.115, №1. С.58-73.
11. Карлов А.В., Шахов В.П. Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики. Томск: STT, 2001 - 477 с.
12. Суворова Е.И., Поляк Л.Е., Комаров В.Ф., Мелихов И.В. Исследование синтетического гидроксиапатита методом высокоразрешающей просвечивающей электронной микроскопии: экспериментальные и теоретические изображения // Кристаллография. 2000. т.45, №5. с. 930.
13. Мелихов И.В., Комаров В.Ф., Северин А.В., Божевольнов В.Е., Рудин В.Н. Двумерно-кристаллический гидроксиапатит // ДАН. 2000. т. 373, №3. с. 355.
14. Безруков В.М., Григорян А.С. Гидроксиапатит как субстрат для костной пластики. Теоретический и практический аспект проблемы // Стоматология. 1996. Т.75, №5. С. 7-12.
15. Дорожкин С.В., Агатопоулус С. Биоматериалы: обзор рынка // Химия и жизнь - XXI век.2002. № 2. С. 8-9.
16. Саркисов П.Д., Михайленко Н.Ю., Хавала В.М. Биологическая активность материалов на основе стекла и систаллов // Стекло и керамика. 1993. №9. С.10
17. Ходаковская Р.Я., Михайленко Н.Ю. Биоситаллы - новые материалы для медицины // Журн. Всесоюзн. хим. о-ва им. Д.И. Менделеева. 1991. Т. 36, № 5. С. 585-593.
18. Саркисов П.Д., Михайленко Н.Ю. Биоактивные неорганические материалы для костного эндопротезирования // Техника и технология силикатов. 1994. т.1, №2, с.5-11.
19. Белецкий Б.И., Гайдак Т.И. Прогнозирование структуры спеченных биоактивных композиционных материалов для стоматологических имплантатов // Стекло и керамика. 2003. №11. C. 27 – 29.
20. Cancedda R., Dozin B., Giannoni P., Quarto R. Tissue engineering and cell therapy of cartilage and bone // Matrix Biology. 2003. V. 22. P. 81–91.
21. Suchanek W., Yoshimura M. Processing and properties of HA-based biomaterials for use as hard tissue replacement implants // J. Mater. Res. Soc. 1998. v. 13, № 1. p. 94– 103.
22. Ребиндер П.А. О влиянии изменения поверхностной энергии на спайность, твердость и другие свойства кристаллов /В сб. VIсъезд русских физиков / М.: ОГИЗ, 1928. С. 29.
23. Лихтман В.И., Щукин Е.Д., Ребиндер П.А. Физико-химическая механика металлов. М.: Изд-во АН СССР, 1960. – 206 с.
24. Баринов С.М., Шевченко В.Я. Прочность технической керамики. М.: Наука, 1996. - 158 с.
25. Michalske T.A., Freiman S.W. A molecular interpretation of stress corrosion in silica // Nature. 1982. V. 295, №5849. P. 511-512.
26. Hench L.L., Polak J.M.Third-Generation Biomedical Materials // Science. 2002. V. 295. P. 1014-1017.
27. Langer R., Vacanti J.P. Tissue engineering // Science. 1993. V. 260. P. 920-926.
28. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements // Injury. 2000. V.31, Suppl. 4. S-D37-S-D47.
29. Леонтьев В.К., Боровский Е.В. Биология полости рта. М.: Медицина, 1991. – 117 с.
30. Леонтьев В.К. Особенности декальцинации эмали с различным уровнем минерализации // Стоматология. 1984. №4. С. 44.
31. Титов А.Т., Ларионов П.М., Щукин В.С., Зайковский В.И. О возможности образования гидроксилапатита в крови // ДАН. 2000. Т.373, №2. С.257-259.
32. Albee F., Morrison H. Studies in bone growth // Annals of Surg. 1920. V.71. P. 32-38.
33. Haldeman K., Moore J. Influence of local excess of calcium and phosphorous on the healing of fractures // Arch. Surg. 1934. V. 29. P.385-396.
34. Ray R., Degge J., Gloyd P., Mooney G. Bone regeneration // J. Bone Joint Surg. 1952. V. 34A, №3. P. 638-647.
35. Aoki H. Science and medical applications of hydroxyapatite. Tokyo: JAAS, 1991. – 245 с.
36. Jarcho M., Kay J., Gumaer K., Doremus R., Drobeck H. Tissue, cellular and subcellular events at the bone-ceramic hydroxyapatite interface // J. Bioengineering. 1977. V.1. P. 79-92.
37. Hench L., Splinter R., Greenlee T., Allen W. Bonding mechanisms at the interface of ceramic prosthetic materials // J. Biomed. Eng. 1971. V. 2. P. 117-141.
38. Kukubo T. Potential of ceramics as biomaterial / in: Ceramics and society, edt. by R.J. Brook. Techna: Faenza, 1995. p. 85.
39. Barinov S.M., Baschenko Yu.V. Application of ceramic composites as implants: results and problem / in Bioceramics and the human body, edts. A.Ravaglioli and A.Krajewsi:London: Elsevier, 1992. P. 206-210.
40. Ohgushi H., Goldberg V.M., Caplan A.I. Heterotopic osteogenesis in porous ceramics induced by marrow cells // J. Orthop. Res. 1989. V. 7. P. 568-578.
41. Курдюмов С.Г. Кальций-фосфатные материалы в стоматологии. Новые результаты // Стоматология для всех. 2001. №1. С. 8.
42. Безруков В.М., Григорьянц Л.А., Зуев В.П., Панкратов А.С. Оперативное лечение кист челюстей с использованием гидроксиапатита ультравысокой дисперсности // Стоматология. 1998. №1. С. 31-35.
43. Карлов А.В. Использование имплантатов с биоактивным покрытием при лечении переломов ослабленных костей / Тр. конгресса Человек и его здоровье. СПб, 1999 - с. 55.
44. Воложин А.И., Курдюмов С.Г., Орловский В.П., Баринов С.М. и др. Создание нового поколения биосовместимых материалов на основе фосфатов кальция для широкого применения в медицинской практике // Технологии живых систем. 2004. Т.1, №.1. С. 41-56.
45. Безруков В.М., Григорян А.С. Гидроксилапатит как субстрат для костной пластики: теоретические и практические аспекты проблемы // Стоматология. 1996. № 5. С. 7-12.
46. Леонтьев В.К. Биологически активные синтетические кальций-фосфатсодержащие материалы для стоматологии // Стоматология. 1996. № 5. С. 4-6.
47. Medical Technology Focus, Monthly Newsletter. 2002. № 14. P. 1-10.
48. Williams D. Benefit and risk in tissue engineering // Materials Today. 2004. V. 7, № 5. C. 24-29.
49. Гистология: Учебник. 2-е изд. перераб. и доп. / Под ред. Э.Г. Улумбекова, Ю.А. Челышева -М.: ГЭОТАР-МЕД, 2001, 672 с.