где t- толщина покрытия, с = 2 sin2 110»0,07 для твердой хрупкой пленки на более мягкой подложке, d= 1/7D- глубина проникновения индентера, D- диагональ отпечатка. Данная модель применима при значительных глубинах вдавливания индентера, при которых поверхностные перемещения покрытия превышают его толщину. Это соответствует значениям d/tболее 1 [343]. Как следствие, выбор адекватного интервала нагрузок на индентер имеет большое значение для точности расчета истинной твердости покрытия. Далее, необходимо учитывать размерный эффект индентирования, заключающийся в том, что измеряемая твердость снижается с возрастанием глубины вдавливания индентера [344,345]. С учетом этого эффекта, уравнение (78) может быть модифицировано следующим образом:
Hc = Hs0 + [Bs + 2c1t(Hf0 – Hs0)]/D(79)
где c1 = c(D/d)» 0,5, Hf0 и Hs0 - истинная твердость покрытия и подложки, соответственно; Bs- коэффициент, значение которого может быть найдено из данных по твердости подложки без покрытия. Из экспериментов с титановой подложкой найдены следующие значения: Hs0 = 1,84±0,06 ГПа, Bs= 5,38×10-6 ГПа×м.
Были получены плотные пленки фосфата кальция толщиной 2,7-2,9 мкм. Микроструктура покрытий показана на рис. 69. На поверхности покрытий присутствуют капли размером до 10 мкм, возникающие в результате плавления и экспульсии материала мишени. Согласно данным энерго-дисперсионного рентгеновского анализа, соотношение Са/Р в покрытиях сохраняется примерно тем же, что и в исходной керамике (расчетное масс. соотношение 2,15). Усредненное по 20 точкам измерений содержание фтора в покрытии, полученном с использованием керамики ГА-10%ФА, составляет 0,54 масс.%, что близко к расчетному.
На рис. 70 приведены дифрактограммы исходной ГА и ГА-10%ФА керамики, а на рис. 71 - дифрактограммы, снятые с покрытий. Из сравнения следует, что рефлексы, соответствующие структуре апатита, полностью отсутствуют на дифрактограммах покрытий. На рис. 72 показана зависимость измеряемой твердости композиционной системы покрытие - подложка от величины, обратной размеру диагонали отпечатка, для образца ГА-10%ФА. Обработка методом наименьших квадратов дала значение Bc= [Bs+ 2ct(Hf0 – Hs0)], равное 49,8 ×10-6 ГПа.м. Рассчитанные значения истинной твердости исходной керамики и покрытий представлены в таблице 16. Из приведенных в таблице данных следует, что твердость покрытия существенно, в 3-4 раза, превышает твердость исходной керамики. Этот неожиданный результат не является артефактом, поскольку методика была успешно применена ранее для измерения твердости пленок различной природы и толщины [346,347]. Объяснение следует искать в особенностях структуры фосфатно-кальциевых покрытий, формируемых методом ПЛАД. Рассматривают следующие возможные причины повышенной твердости тонких пленок [348]. Объем деформируемого материала мал и содержит пониженное количество дислокаций, в результате чего прочность (предел текучести) приближается к теоретическому пределу для совершенного кристалла. В процессе индентирования может происходить интенсивное деформационное упрочнение в результате торможения перемещения дислокаций границей раздела пленка/подложка, что приводит к возникновению полей внутренних напряжений, препятствующих дальнейшему перемещению дислокаций и к возможному торможению распространения трещин. Разветвленная сеть границ между нанозернами в структуре покрытия также затрудняет перемещение дислокаций. Однако трудно предположить существенное по величине деформационное упрочнение в хрупких материалах со структурой апатита, поскольку известно, что плотность дислокаций в кристаллах такого типа должны быть низкой.
Установлено, что даже использование эксимерного KrFлазера (длина волны излучения 248 нм) в сочетании с УФ-облучением (184,9 нм) при малых флюэнсах, 1-2 Дж/см2, позволяет получать методом ПЛАД фосфатно-кальциевые покрытия (в качестве мишени использовали таблетки из ГА) с необычно высокими показателями механических свойств: модуля Юнга (до 180 ГПа) и твердости (до 7,5 ГПа, измерено методом наноиндентирования) [349]. Эффект объясняют химическими превращениями молекулы ГА под воздействием лазерного и УФ-облучения, в частности протеканием реакции фотодиссоциации ГА с образованием безводного фосфата кальция и улетучиванием пятиокиси фосфора из продуктов реакции:
Са10(РО4)6(ОН)2 - Н2О → Са4О(РО4)2 + Са2Р2О7 + 4СаО + Р2О5 (80)
Продукты реакции обладают повышенной реакционной способностью по отношению к подложке, изготовленной из титанового сплава, обеспечивая получение плотного тонкокристаллического покрытия, содержащего помимо ГА и другие кальций-фосфатные фазы.
Покрытия, получаемые с использованием Nd:YAGлазера при высоких флэнсах, по-видимому, имеют существенно разупорядоченную, аморфизованную структуру, образующуюся в результате плавления и частичного химического разложения материала мишени в лазерной плазме. Материалы с такой структурой обладают низкой способностью к релаксации механических напряжений посредством пластической деформации и, следовательно, высокой твердостью. Известно, что пленки, осажденные с использованием Nd:YAGлазера содержат больше стеклообразной фазы по сравнению с пленками, осажденными эксимерным лазером, вследствие пониженного коэффициента поглощения излучения материалом ГА-мишени [350]. Важное значение для формирования структуры покрытия имеет температура подложки. Осаждение на подложку при комнатной температуре приводит к большей аморфизации покрытия по сравнению с нанесением на подогретую подложку. С повышением флюэнса усиливается испарение материала мишени и его термическое разложение [339]. Эти процессы увеличивают разупорядоченность структуры. Фосфатно-кальциевые покрытия, нанесенные методом ПЛАД при высоких флюэнсах, как было показано, обладают хорошей биосовместимостью с остеобластами, способствуя их пролиферации [339]. Таким образом, метод ПЛАД позволяет гибко варьировать параметры структуры и показатели свойств кальций-фосфатных покрытий в широких пределах.
Электронно-лучевое осаждение
Другим перспективным физическим методом получения биосовместимых покрытий является электронно-лучевое осаждение. Данный способ успешно использован для нанесения покрытий карбида титана на титановые имплантаты с целью защиты последнего от коррозии жидкостями организма и придания шероховатости поверхности. Однако известно относительно мало исследований, направленных на нанесение кальций-фосфатных покрытий. В работе [351] изучали осаждение ГА на кремниевые подложки (модельный материал) с использованием спеченного ГА в качестве мишеней. Осаждение проводили в вакууме 5·10-4 Па при ускоряющем напряжении 6 кВ и токе пучка 110 мА, температуре подогрева подложки 1600С. Толщина пленок составила примерно 500 нм. Осажденные пленки были аморфными, аморфизация сохранялась после отжига при 7000С. Полная кристаллизация покрытия была достигнута только отжигом при 12000С в течение 3 ч, причем на дифрактограммах присутствуют основные пики ГА. Однако соотношение Са/Р в материале покрытия изменялось в зависимости от температуры термической обработки (рис. 73), что является результатом изменения последовательности испарения фосфора и кальция и должно оказывать существенное влияние на биологическое поведение покрытия. Прочность адгезии покрытия к подложке (скратч-тест) снижалась с повышением температуры отжига. Многие вопросы, связанные с электронно-лучевым осаждением фосфатно-кальциевых покрытий, такие как влияние температуры подогрева подложки, величины смещения ускоряющего напряжения и др., являются предметом дальнейших исследований, но метод электронно-лучевого осаждения может рассматриваться как весьма перспективный для получения тонких пленок фосфатов кальция, даже в производственных масштабах.
Биомиметическое формирование покрытий
Связь имплантируемого материала с костной тканью развивается через стадию биомиметического формирования биологически активного слоя карбонат-содержащего апатита на поверхности материала. Образование такого слоя инициируется переходом ионов кальция из имплантируемого материала в жидкость (СБФ), моделирующую по своему составу внеклеточную жидкость организма. Такая жидкость обычно близка про составу к плазме крови и содержит фосфат- и карбонат-ионы. В результате изменения произведения ионных активностей апатита в жидкости и при наличии соответствующих центров, происходит биомиметическая кристаллизация апатита на поверхности материала. Биомиметические апатитовые покрытия могут быть сформированы и на инертном, устойчивом к растворению материале, например полимерном. В этом случае материал последовательно погружают в СБФ для создания центров кристаллизации (обычно, СБФ с размещенными в нем гранулами биостекла, содержащего Са и кремнезем) и затем в раствор, пересыщенный по отношению к апатиту для кристаллизации последнего на созданных центрах. Толщина биомиметического слоя возрастает во времени, скорость его формирования увеличивается со степенью пересыщения СБФ. Метод успешно был использован для нанесения покрытий на различные полимерные материалы, в том числе в виде волокон или тканей, из которых могут быть созданы имплантируемые конструкции, например матриксы для клеточных технологий регенерации костных тканей. Конструкции могут быть приданы свойства, близкие к таковым у естественной ткани, в том числе высокое сопротивление разрушению и низкий модуль упругости.
Первоначально, биомиметический метод был применен для формирования апатитовых слоев на биостеклах и биоситаллах, которые сами являются источниками ионов кальция, переходящих в СБФ. Затем метод был распространен на полимерные и металлические материалы. Для последних существует своя специфика формирования покрытия. В работе [352] изучали нанесение покрытия на тантал, который не обладает биоактивностью по отношению к образованию связи с костной тканью. Выдержка Та в СБФ приводит к образованию связей Та-ОН на его поверхности, эффективных для последующего инициирования осаждения апатита, что, однако, требует длительного периода времени (28 суток в описанном эксперименте). Обработка тантала 0,5М раствором NaOHпри 600С перед погружением его в СБФ приводила к существенному ускорению процесса, что обусловлено образованием поверхностного слоя гидрогеля танталата натрия. Полагают, что ионы натрия легко переходят из гидрогеля в раствор в результате ионного обмена с Н3О+ в СБФ, процесс сопровождается образованием Та-ОН связей на поверхности и повышением концентрации групп ОН- в растворе. Связи Та-ОН индуцируют нуклеацию апатита, причем процесс ускоряется за счет увеличения произведения ионных активностей. Для повышения механической стабильности, гидрогель может быть подвергнут термической обработке при 3000С на воздухе для перевода его в аморфный танталат натрия и, далее, при 5000С - для его кристаллизации. Однако апатитообразующая способность слоя снижалась с повышением температуры обработки выше 3000С. Предлагается использовать данный процесс для обработки стоматологических и ортопедических материалов и устройств перед их имплантированием.