Смекни!
smekni.com

Биокерамика на основе фосфатов кальция (стр. 23 из 33)

Для повышения прочности может быть применено армирование цемента волокнами, причем армирование может также обеспечивать создание канальных пор, если армирующие волокна растворимы и подвержены резорбции. В работе [306] в "классическую" цементную пасту ТеКФ с ДКФ (мол. соотношение компонентов 1:1), затворенную водой, вводили резорбируемые жидкостями организма волокна Викрил™ (полиглактин 910) диаметром 322 мкм и длиной 8 мм в количестве 25 об.%. После схватывания и твердения при 370С и 100% влажности, часть образцов погружали в изотонический 0,9%-ный раствор NaCl на период времени до 56 суток. Прочность при изгибе было повышена с 5 МПа для неармированного цемента до 12-14 МПа для композиционного материала. После примерно 10 суток выдержки в изотоническом растворе прочность резко снижалась. Особенно заметно, примерно в 100 раз, была повышена работа разрушения, максимальное значение которой составило для композиционного материала 3,4 кДж/м2. Механизм повышения работы разрушения - перекрытие распространяющейся трещины мостиками связи - волокнами, вытягивание которых из цементной матрицы препятствует раскрытию трещины из-за сил трения по границе раздела волокно-матрица [170]. После растворения в матрице были сформированы канальные поры размером более 250 мкм. Предложенный прием представляется весьма эффективным для создания матриксов по цементной технологии.

Для того, что найти широкое практическое применение в костной хирургии для непосредственного заполнения дефектов кости, например при пластике позвоночника, апатитовые цементы должны обладать повышенной прочностью и инжектируемостью - две основные проблемы, на решение которых направлены усилия исследователей. Проблема повышения механических свойств является одной из наиболее актуальных. Прочность апатитовых цементов при сжатии находится в интервале 20-83 МПа, существенно ниже прочности кортикальной кости (90-209 МПа) [307]. Прочность брушитовых цементов еще ниже: при сжатии она составляет 1-24 МПа, при растяжении (диаметральном сжатии) - 0,7-4,5 МПа [308]. В таблице 15 приведены торговые марки некоторых промышленных костных и стоматологических цементов, исходные компоненты, образующиеся соединения и данные по прочности [28].

Отмечалось, что прочность цементов при сжатии находится в интервале 10-80 МПа, что существенно ниже прочности костной ткани (300-400 МПа), а также акрилатных костных цементов (68-260 МПа) [309]. Прочность цементов системы -ТКФ- ТеКФ была существенно повышения введением в их состав частично-стабилизированного диоксида циркония, про принципу трансформационного упрочнения [170]. Предпринимались также попытки повышения прочности цементов использованием добавок желатина [309, 310]. Изучали цементы, схватывание и твердение которых происходит в результате взаимодействия -ТКФ с водой с образованием кальций-дефицитного ГА, ДКФД или ОКФ, в зависимости от условий проведения реакции. При физиологических значениях рН и температуры продуктом реакции является кальций-дефицитный ГА, причем на скорость схватывания можно влиять введением других солей кальция [311]. Введением 5 масс. % желатина удалось повысить прочность цемента с 8 до 14 МПа (после 1 недели выдержки), причем прочность возрастала до 35 МПа на 30 сутки твердения. Вводя дополнительно в состав смеси пластинчатые кристаллы СаTiO3 (4 мкм длиной) или ГА (3 мкм длиной) прочность на 7 сутки цемента с 5 масс. % желатина была повышена до 31,3 и 34,8 МПа, соответственно [309]. Повышение содержания желатина свыше 5 масс. % снижало прочность. Преимуществом цемента с желатином является его пластичность и устойчивость к быстрому схватыванию при помещении в буферную среду трис(гидроксиметил)аминометана. Аналогичный вариант был изучен в работах [311], однако в цемент дополнительно вводили 5 масс.% ДКФД. Достигнута максимальная прочность 14 МПа до 150 ч твердения, по сравнению с 2,5 МПа для контрольной смеси без желатина.

Значительное повышение как прочности, так и инжектируемости апатитовых и брушитовых цементов было достигнуто в работах [307]. Немодифицированные специальными добавками цементы не являются инжектируемыми системами, поскольку они легко расслаиваются при инжектировании из шприца на твердую и жидкую фазы, как при фильтр-прессовании. Повышение устойчивости системы к расслоению на твердую и жидкую фазу можно достичь использованием различных добавок к жидкой фазе, таких как молочная кислота, глицерин, хитозан, лимонная кислота или растворимые полимеры [312]. Цитратные ионы не токсичны и обнаруживаются в твердых тканях человека [307]. Известно, что цитратные ионы тормозят процесс выделения ОГА в цементах. Вследствие низкого значения рН лимонной кислоты (рН = 1,32) в ней происходит быстрое растворение частиц фосфатов кальция, процесс завершается при полном расходе кислоты. Концентрации ионов Са2+ и фосфат-ионов в связующем резко возрастает. Уровень пересыщения, необходимый для выделения ОГА из цитрат-содержащей среды, повышается. Положительным эффектом цитрат-ионов является снижение вязкости пасты, происходящее, как полагают, из-за сил отталкивания, создаваемых этими ионами. Избежать недостатков, связанных с использованием лимонной кислоты, можно, применяя ее соли.

В работе [307] изучали реологическое поведение и прочность "классического" апатитового цемента в системе ТеКФ - ДКФ с добавками трехнатриевой соли лимонной кислоты, исходя из следующих предпосылок: 1) соль не вызывает существенного снижения рН, в отличие от лимонной кислоты; 2) не должно происходить значительного повышения концентрации Са2+ и РО43- в жидкой фазе и 3) соль не должна существенно тормозить кинетику схватывания цемента. Готовили в шаровой мельнице твердую смесь ТеКФ (размер частиц 10-15 мкм) с ДКФ в примерно эквимолярном соотношении. Затем к смеси добавляли 1 г сухой смеси Na2HPO4/NaH2PO4 (мол. соотношение 1:2) для ускорения схватывания до 4-5 мин при затворении водой. Готовили цементные образцы с соотношением фосфатная фаза : жидкость 3,3 г/мл, используя в качестве жидкости раствор 500 мМ трехнатриевого цитрата или 500 мМ лимонной кислоты в воде. Цементную пасту получали, смешивая 800 мг твердой фазы с варьируемым количеством жидкости в вибросмесителе в течение 15 с. Образцы цемента в стальной пресс-форме подпрессовывали давлением 9-50 МПа и затем к ним прикладывали давление 0,7 МПа на период времени 2 ч при 370С и относительной влажности 100%. Перед механическими испытаниями образцы выдерживали в воде в течение 22 ч.

Время схватывания зависело от соотношения твердой и жидкой фаз, в общем снижаясь с повышением содержания первой, а также от количества натриевой соли. Использование раствора соли привело к повышению прочности цемента на 400% по сравнению с цементом, затворенным водой. Максимальное значение прочности составило 154 МПа (500 мМ соли в растворе, подпрессовка давлением 50 МПа) при его пористости 19%. Паста обладала великолепной инжектируемостью (отношение массы инжектированной пасты к исходной ее массе) при экструдировании из шприца с иглой для подкожных инъекций (игла 1,1 мм х 30 мм, внутренний диаметр отверстия 800 мкм) со скоростью 200 мм/мин при приложении усилия 300 Н. Важно, что при комнатной температуре паста сохранялась жидкой в течение более 1 ч, а при физиологической температуре она схватывалась в течение нескольких минут.

Аналогичный подход был применен и к брушитовым цементам системы -ТКФ - МКФМ [308]. Предварительно подпрессованный под давлением 10 МПа цемент после схватывания и твердения в течение 24 ч во влажной среде имел прочность до 55 МПа, что значительно превосходит известные данные для брушитовых цементов.