Смекни!
smekni.com

Биокерамика на основе фосфатов кальция (стр. 17 из 33)

Показано, что гранулы не вызывают острой цитотоксичности, и имеют адгезивную способностью, зависящую от добавок фтора, что выражается в различной скорости увеличения популяции ФЧ. Наилучшими по этому признаку оказались образцы гранул ГА, позволяющие наращивать в 2,5 раза больше клеток in vitro за равный отрезок времени по сравнению с контролем (культуральные лунки без гранул). На рис. 41 показано изменение оптической плотности раствора формазана при совместном культивировании ФЧ и гранул ГА с разной плотностью посева. Можно отметить трехкратное увеличение плотности популяции на 11-й день культивирования. Введение в ГА фторид-ионов в количестве 2 и 10 масс. % взамен групп ОН- не улучшает свойства материалов как матриц для наращивания клеток. Однако ионы фтора, как известно, повышают устойчивость апатитовой керамики к резорбции внеклеточными жидкостями, что может быть полезным для ряда применений. Можно полагать, что керамические гранулы, обладая существенно более высокой площадью поверхности для клеточной экспансии по сравнению с контролем, изменяют исходную плотность посева на единицу потенциальной ростовой поверхности.

В экспериментах in vivo вокруг гранул уже к 10 суткам формируется капсула из соединительной ткани, толщина которой увеличивается со временем в течение эксперимента. На 10-е сутки после имплантации на поверхности капсулы отмечены многочисленные кровеносные сосуды, причем процесс неоангиогенеза не ограничивается только капсулой - на 24 и 38 день опыта кровеносные сосуды и капиллярная сеть видны и на многочисленных гранулах ГА внутри капсулы (рис. 42). В эти же дни отмечается активное прорастание соединительной тканью промежутков между гранулами внутри капсулы и заполнение фибробластами мыши пустот внутри некоторых гранул керамики.

На основе полученных результатов было проведено исследование гранул ГА в качестве матрикса длямезенхимальных стволовых клеток (МСК) на модели дефекта теменной кости крысы в экспериментах in vivo (МНИОИ им П.А. Герцена).

Работа выполнена на 10 крысах - самках линии Вистар весом 180-200 г. Все операции осуществляли под наркозом: на первом этапе - седация животного при помощи 0,5 мл дроперидола внутрибрюшинно, затем –0,3 мл кетамина внутримышечно. Ход операции по созданию дефекта теменной кости крысы был следующим: в лобно-теменной области животного производили кожный разрез скальпа, затем мобилизовали апоневроз, оголяя теменную кость. Посредством бора осторожно формировали дефект кости до твердой мозговой оболочки размерами 4 мм по длине, 2-3 мм по ширине, глубиной 1-2 мм. После операции область дефекта сверху укрывали апоневрозом и наглухо зашивали кожу скальпа.

Всего было сформировано три группы животных: I – костный дефект (контроль I); II- полость костного дефекта заполняли гранулами ГА (контроль II); III- полость костного дефекта заполняли МСК, предкультивированными на гранулах ГА (опыт). Рентгенологический и гистологический контроли осуществляли в день операции и далее через 3 месяца.

Первичная культура клеток из КМ крысы была полиморфной. Однако уже через неделю в культуре обнаруживались многочисленные фибробластоподобные клетки, которые далее формировали колонии и через 17-21 дней образовывали предконфлюэнтный монослой. Культура МСК крысы первого пассажа в основном была представлена клетками веретеновидной формы (80-90%), реже встречались округлые и кубоидальные клетки. После культивирования МСК крысы на гранулах ГА отмечалась их высокая жизнеспособность.

Показано, что в I контрольной группе животных (дефект теменной кости) через 3 месяца после операции наблюдали спонтанное неравномерное закрытие дефекта (рис. 43а). На гистологических срезах при этом отмечено формирование плотной надкостницы с грубыми рубцовыми изменениями в области трепанации.

Во II группе контрольных животных (дефект теменной кости, заполненный гранулами ГА) на рентгеновских снимках (рис. 43б) обнаружено закрытие дефекта на всем протяжении оперативного вмешательства с формированием надкостницы с интимно прилегающими к ней гранулами ГА. Морфологический анализ выявил формирование плотной фиброзной капсулы вокруг гранул ГА.

Наиболее интегрированные и упорядоченные структуры в области закрытия дефекта обнаружены в III группе животных (дефект теменной кости, заполненный гранулами ГА, насыщенными МСК) (рис. 43в). На гистологических препаратах отмечено равномерное закрытие дефекта на всем его протяжении, гранулы ГА были окружены плотной фиброзной капсулой, зрелая упорядоченная соединительная ткань заполняла промежутки между гранулами, прорастая ряд из них. На краях дефекта и под надкостницей наблюдали очаги остео- и хондросинтеза.

Таким образом, результаты испытания invitroи invivoсвидетельствуют о принципиальной возможности использования гранул в качестве матриксов для аллогенных и аутологичных клеточных культур с целью замещения обширных тканевых дефектов.

Одно из важных применений гранул на основе ГА, и пористой керамики – система доставки лекарственных препаратов. Из литературных источников известно, что подход для решения этой проблемы с использованием керамики является относительно новым, несмотря на то, что первые исследования по системам локальной доставки лекарств начаты еще в 1930 году, а использование керамики как основы для таких систем доставки лекарств - только 1980 годах. Результаты первых клинических испытаний были опубликованы в 1997 году [210].

Главным направлением исследования системы доставки лекарственных препаратов является решение проблемы поддержания постоянной концентрации препарата в крови реципиента в течение заданного времени (пролонгированная фармокинетика). Это обусловлено тем, что периодичность перорального приема или паренторального введения лекарственных препаратов может вызвать превышение допустимой дозы вследствие кумулятивного накопления препарата и, как следствие, общую токсикацию (рис. 44).

Преимущества и недостатки использования керамики в системе доставки лекарственных препаратов следующие: преимущества - точечная, локальная терапия; постоянная скорость выделения препарата; минимум побочных эффектов; высокая эффективность; недостатки - высокая стоимость; иногда потребность в хирургическом вмешательстве.

Использование ГА керамики в качестве системы доставки дает возможность управляемого, локализированного выделения препарата, причем продолжительность выделения может достигать одного года. В [198] показана возможность увеличения продолжительности выделения в 2-3 раза лекарственного препарата посредством покрытия ГА гранул полилактидами. Время выделения контролировалось пористостью гранул и толщиной покрытия.

Системы доставки препаратов с применением керамики можно классифицировать следующим образом: гомогенные и гетерогенные. Гомогенные системы подразумевают использование отпрессованной смеси порошка лекарства и порошка, микрогранул ГА или гранул ГА непосредственно пропитанных раствором лекарственного препарата. Гетерогенными системами являются керамические резервуары, заполненные порошком.

Эффективность и кинетика выделения препарата зависит от биологической активности керамического материала и его структуры. В работе [214] разработана математическая модель, позволяющая рассчитать процесс выделения лекарственных веществ из пористых матричных систем с постоянным градиентом содержания. Для моделирования выделения использован метод интегральных соотношений, который является приближенным методом решения задач массопереноса. Метод заключается в составлении приближенного балансового соотношения массы вещества. Балансовое соотношение определяется данными о начальном распределении вещества в системе и о его переносе, который описывается первым законам диффузии Фика. В результате решения определяется параметрическая зависимость общего вида:

t (j0) = f1 (j0), (56)

где t - безразмерное время процесса высвобождения;

j0 – относительная координата положения фронта растворения вещества.

Параметр t определяется следующим образом:

t = Dt/R2, (57)

где t– время высвобождения;

R– радиус матрицы.

Нами проведены исследования совместно с Институтом нормальной физиологии РАМН in vivo на крысах серии Вистар, которое продемонстрировало пролонгированную кинетику выделения препарата, моделирующее лекарственное средство (метиленовый синий), из пористых сферических гранул ГА диаметром 2 мм. Содержание препарата в крови животных достигает максимума 0,98 мг/мл после 2-3 часов и находится на этом уровне 40 часов, затем происходит постепенное уменьшение содержания препарата в течение 100 часов (рис. 45). Этот результат можно объяснить наличием тонких пор, большим их содержанием и степенью взаимосвязанности, а также низким коэффициентом диффузии препарата в пористой матрице за счет действия капиллярных сил [203]. Аналогичный результат по выделению гентамицына (пролонгированность фармокинетики до 84 часов) приведены в работе [215] при использовании композиционных гранул ГА - хитозан.

4.2 керамика

Керамика на основе фосфата кальция может быть изготовлена с применением различных технологий, выбор которых зависит от требований к микроструктуре и свойствам материала. Для имплантатов, несущих механическую нагрузку, целесообразно использовать плотно спеченную керамику, обладающую большей прочностью по сравнению с пористой керамикой. Микроструктура такой керамики должна быть тонкодисперсной, поскольку прочность возрастает с уменьшением размера зерна согласно известной зависимости Холла-Петча [216]: