Смекни!
smekni.com

Биокерамика на основе фосфатов кальция (стр. 12 из 33)


3.2 Термическаястабильностьиособенностиспеканияфосфатно-кальциевойкерамики

Общие закономерности спекания керамических материалов рассмотрены в [173-176]. Спекание представляет собой процесс уплотнения и консолидации частиц порошковой массы под действием высоких температур. Следствием спекания является упрочнение материала. Керамический материал медицинского назначения должен обладать достаточной прочностью, близкой к прочности костной ткани; высоким сопротивлением усталости при воздействии статических и динамических нагрузок, особенно в коррозионно-активной среде организма, а также удовлетворительной вязкостью разрушения.

При спекании выделяют следующие основные процессы [173-176]:

· уплотнение материала, связанное с изменением количества, размеров и формы пор;

· рекристаллизация, т.е. перемещение в материале высокоугловых границ;

· возврат, или снижение и выравнивание остаточных напряжений;

· образование жидкой фазы, полиморфные превращения, химические реакции.

Наиболее типичными процессами, оказывающими влияние на свойства однофазной керамики, являются первые два. Среди многих исследований процессов спекания керамики на основе ГА следует отметить работы [177-178]. Уменьшение удельной поверхности ГА начинается при температурах около 5000С, а уплотнение - обычно при 8500С. На процесс спекания ГА существенно влияет парциальное давление паров воды в атмосфере, которые оказывают каталитическое действие. Полагают, что при относительно низких температурах припекание частиц ГА происходит по механизму поверхностной диффузии и контролируется скоростью адсорбции-десорбции водяного пара на поверхности ГА, тогда как при высоких температурах определяющим механизмом является транспорт через газовую фазу. Рассчитанные в работе [176] кажущиеся энергии активации процессов составили, соответственно, 117 кДж/моль (при Т<8500С) и 208 кДж/моль (при Т>8500). Процесс уплотнения происходит по механизмам зернограничной и объемной диффузии. Зависимость линейной усадки от времени описывается соотношением

dL/L0 = ktn, (47)

dL- изменение размера, L0 - исходный размер, kи n- постоянные. Значение nзависит от степени кристалличности исходного порошка, температуры спекания в изотермическом режиме и меняется во времени. Например, n= 0,42 на начальных стадиях и n= 0,24 на конечных стадиях процесса спекания при 9400С порошка высокой (80 %) степени кристалличности. Повышение температуры спекания и снижение степени кристалличности приводят к уменьшению значения n.

Спекание керамики ГА осложняется двумя причинами: потеря радикалов ОН- и распад ГА при высоких температурах [177-179]. Первый процесс происходит согласно реакции:

Са10(РО4)6(ОН)2 = Са10(РО4)6(ОН)2-2xOxnx+ xH2O(48)

где nх – вакансия, х<1.

Оксигидроксиапатит Са10(РО4)6(ОН)2-2xOxnxформируется уже при температуре 900 0С на воздухе, а в атмосфере, не содержащих паров воды, температура его образования понижается до 850 0С.

При повышении температуры от 1200 до 1550°С к процессу потери групп ОНˉ добавляется разложение ГА на α-ТКФ и тетракальцийфосфат, последний иногда представляют в виде двойной соли ТКФ и оксида кальция: Са3(РО4)2·СаО. Реакция разложения ГА может быть представлена следующим образом:

Са10(РО4)6(ОН)2 = 2(a-Са3(РО4)2) + Са4Р2О9 + H2O(49)

Данный процесс обратим, т.е. в случае избытка паров воды в атмосфере, в которой происходит нагрев ГА, возможен обратный переход ТКФ в ГА:

Са3(РО4)2 → Са5(РО4)3ОН (50)

ТКФ существует в двух кристаллических модификациях: высокотемпературной – α-ТКФ и низкотемпературной – β-ТКФ. Рентгеновская плотность β-ТКФ составляет 3,067 г/см3, температура разложения 1380°С , для α-ТКФ эти параметры имеют значения 2,18 г/см3 и 1720°С, соответственно. Фазовое превращение β-ТКФ в α-ТКФ происходит в температурном интервале 1200-1400°С и сопровождается 7%-ным увеличением объёма материала. Так как данное превращение протекает медленно, то обе формы ТКФ можно обнаружить при комнатной температуре. В то же время ТКФ обладает большей резорбционной способностью в организме человека по сравнению с ГА.

Полагают, что критической для сохранения фазового состава верхней температурой спекания ГА является температура около 1300 0С, причем точное ее значение зависит от атмосферы, в которой проводится спекание, а именно, от парциального давления паров воды [21]. Повышение содержания влаги в среде спекания стабилизирует ГА при высоких температурах. В работах [176,180], однако, была продемонстрирована устойчивость ГА с соотношением Са/Р = 1,68 к термическому разложению вплоть до температуры 1450 0С при выдержках до 3 ч. Повышение температуры до 1500 0С приводит к разложению ГА. Плотность, близкая к теоретической, достигается при температуре спекания тонкодисперсных порошков ГА 1300 0С с выдержкой при этой температуре в течение 3 ч. Дальнейшее повышение температуры приводит к собирательной рекристаллизации – размер зерна увеличивается от 4 до 14 мкм с повышением температуры спекания от 1300 до 1450 0С. Зависимость размера зерна от температуры термообработки описывается уравнением Аррениуса. Оцененная по этой зависимости кажущаяся энергия активации равна 196 кДж/моль [176].

Представляется очевидным, что температурно-временные параметры процесса спекания должны зависеть от предыстории порошка и его дисперсности, влияющих на активность при спекании, а также и от фазового состава. Увеличение размера частиц исходного порошка ГА от 1 до 4,2 мкм приводит к значительному повышению температуры начала интенсивной усадки при спекании. Несмотря на более высокую плотность сырых прессовок, полученных из крупных порошков, достигаемая при спекании плотность увеличивается с уменьшением размера частиц. Энергии активации процесса роста зерна ГА при спекании составляет 122 кДж/моль, что соответствует нижней границе интервала известных значений энергии активации самодиффузии в ГА (140-240 кДж/моль) [1]. Однако систематические исследования по росту зерна и энергии активации этого процесса в материалах на основе ГА не проводились.

Уплотнение при спекании может быть интенсифицировано посредством формирования жидкой фазы при температурах спекания. В качестве добавки, формирующей жидкую фазу при спекании, может быть также использовано фосфатное или силикатное стекло. Спекание ГА с использованием добавки стекла Bioglass® состава (в мол.%): Р2О5 – 2,6; СаО – 26,9; Nа2О – 24,0; SiO2 – 46,1 позволило не только повысить механические свойства керамики, но и улучшить ее биологическое поведение. На поверхности такой керамики при выдержке в жидкости, моделирующей плазму крови, образуется слой апатита [181-182].

В работе [183] показано, что фосфаты щелочных металлов интенсифицируют процесс уплотнения ГА как при традиционном спекании, так и горячем прессовании вследствие образования жидкой фазы. Введение добавок - соединений Na3PO4 и K3PO4, используемых также в качестве источников фосфора при получения осадков ГА мокрым способом, не оказывает отрицательного влияния на биосовместимость материалов. Однако, особенности спекания при введении таких добавок, и влияние добавок на механические свойства керамики детально изучены не были.

Нами было исследовано влияние добавки фосфата натрия, вводимой в количестве 1 и 2%, на усадку при спекании, формирование микроструктуры, фазового состава и механических свойств гидроксиапатитовой керамики [184]. Установлены условия достижения максимума механических свойств плотноспеченной керамики. На рис. 14 показаны кривые непрерывной усадки образцов ГА без добавки и с добавкой Na3PO4. В интервале температур до 500-800оС происходит лишь некоторое термическое расширение образцов (до 0,3%). Начало усадки образцов 1-3 соответствует температурам 750-1000оС. В начале этого интервала усадка незначительна. Можно полагать, что в этом интервале спекание происходит по механизму поверхностной диффузии, при котором наблюдается сфероидизация частиц и образование контакта между ними, но не происходит сближение их центров [173]. Далее, с повышением температуры, начинается ускоренная усадка, что свидетельствует о лимитирующей роли объемной диффузии в процессах уплотнения. Начало усадки модифицированных составов происходит при следующих температурах: состав с 1% Na3PO4 - 800 оС, с 2%Na3PO4 - 750оС. Достижение 4% усадки соответствует температурам:, 1180оС с 1% Na3PO4, 1040оС с 2%Na3PO4, когда, по-видимому, в образцах образуется развитая система стыкующихся границ.

В интервале 1230-1300оС образцы ГА без добавки характеризуются максимальной скоростью усадки. Этот участок соответствует, по-видимому, интенсивному росту шеек с образованием новых границ между зернами, удалению открытых пор. Основная роль в уплотнении принадлежит, по-видимому, объемной диффузии вакансий. Усадка при конечной температуре достигает 10,5%.

Образцы с добавкой Na3PO4 начинают спекаться раньше (на 70-130оС), чем ГА без добавки, но процесс уплотнения протекает медленнее, хотя величина усадки больше и при 1300оС составляет 12,5 и 12,9%, соответственно для составов с 1 и 2 % Na3PO4 соответственно. Таким образом, добавка фосфата натрия интенсифицирует процесс уплотнения вследствие образования, по-видимому, жидкой фазы.

Участок 1300-1350оС соответствует максимальным значениям усадки и плотности при практически нулевой открытой пористости. Уплотнение здесь происходит за счет медленного процесса удаления изолированных пор и рекристаллизации. Все образцы имеют практически одинаковые значения плотности: 98,4-98,7% от теоретической.