Смекни!
smekni.com

Увеличение степени защиты стали от коррозии в нейтральных и кислых средах (стр. 7 из 11)

Рисунок 2.5 – Зависимость логарифма константы равновесия от температуры.

По приведенным результатам расчета термодинамических характеристик рассматриваемой реакции можно сделать следующие выводы:

1) Так как

>0, то реакция эндотермическая

2) Энергия Гиббса становится отрицательной при температуре 385 К, следовательно, процесс термодинамически возможен, только при условие, что температура реакции больше 385 К, далее видно, что с повышением температуры, термодинамическая вероятность протекания процесса в прямом направлении линейно возрастает. На практике процесс осуществляется при 390 – 400 К.

3) При температурах больше 385 К константа равновесия Кр >1 и далее с повышением температуры экспоненциально возрастает, тем самым равновесие смещается в сторону продуктов реакции.


3. Расчет материального баланса

Расчет материального баланса будем вести, приняв производительность установки 5 т/сут. Синтез ведется в реакторе идеального смешения периодического действия, поэтому все расчеты будем вести на один цикл.

В процессе производства целевого продукта – борат метилфосфита протекают следующие реакции [24]:

Основная реакция:

Побочная реакция:

Основные данные для расчета материального баланса сведем в таблицу:

Таблица 3.1 – Основные данные для расчета

Статьи Размерность Величина
Производство по борат метилфосфиту, П т/сут 5
Время одного цикла ч 3
Технологический выход, f % 97
Молярное соотношение Н3ВО3/ДМФ доли 1: 3
Степень превращения, х % 98
Селективность основной реакции, Ф % 98,3
Состав исходных реагентов, W: %
Борная кислота хч

Н3ВО3 – борная кислота (А)

Na2SO4 – сульфат натрия
982
Диметилфосфит хчС2Н7РО3 – диметилфосфит (В)СН5РО3– монометилфосфит (С) 991
Молярные массы, М:Н3ВО3 – борная кислота Na2SO4 – сульфат натрияС2Н7РО3 – диметилфосфит (ДМФ)СН5РО3– монометилфосфит (ММФ)Борат метилфосфит (целевой) (D)Борат метилфосфит (побочный) (E)CH3OH – метанол (F) кг/кмоль 621421109632612632

Уравнение материального баланса имеет вид:

где

– количество борной кислоты идущей на основную и побочную реакции соответственно;
– количество метанола выделяющегося в основной и побочной реакции соответственно;
– не прореагировавшее количество борной кислоты, ДМФ и ММФ соответственно.

1. Перевод производительности основному продукту из т/сут в кг/цикл.

2. Количество целевого продукта с учетом технологического выхода.


Потери целевого продукта.

3. Количество борной кислоты, требуемое на образовани 1,98 кмоль/цикл целевого продукта.

4. Количество борной кислоты с учетом селективности.

5. Количество борной кислоты с учетом степени превращения.

6. Количество борной кислоты идущей на побочную реакцию.

7. Количества веществ образовавшихся в побочной реакции.


8. Количество метанола образовавшегося в основной реакции.

9. Количество не прореагировавшей борной кислоты.

10.

11.Количество технической борной кислоты требующегося для получения 1,92 кмоль/цикл целевого продукта.

12.Количество сульфата натрия (примесь).

13.Количество диметилфосфита из заданного мольного соотношения.


Количество диметилфосфита расходуемого на основную реакцию.

14.Количество не прореагировавшего диметилфосфита.

15.Количество технического диметилфосфита требующегося для получения 1,98 кмоль/цикл целевого продукта.

16.Количество монометилфосфита (примесь).

17.Количество монометилфосфита идущего на побочную реакцию.

18.Количество не прореагировавшего монометилфосфита


Таблица 3.2 – Приход материальных потоков

Вещество кг/цикл %, масс. кмоль/цикл %, моль.
Н3ВО3 254,41 15,63 4,10 24,73
Na2SO4 5,19 0,32 0,04 0,22
ДМФ 1354,11 83,21 12,31 74,19
ММФ 13,68 0,84 0,14 0,86
Итого 1627,39 100,00 16,59 100,00

Таблица 3.3 – Расход материальных потоков

Вещество кг/цикл %, масс. кмоль/цикл %, моль.
Олигомер (целевой) 625,00 38,40 1,92 11,55
Метанол (осн. р-ция) 252,99 15,55 7,91 47,65
ММФ (непр.) 7,12 0,44 0,07 0,45
Na2SO4 5,19 0,32 0,04 0,22
Н3ВО3 (непр.) 5,09 0,31 0,08 0,49
ДМФ (непр.) 701,88 43,13 6,38 38,46
Олигомер (побоч.) 8,61 0,53 0,07 0,41
Метанол (поб. р-ция) 2,19 0,13 0,07 0,41
Потери 19,33 1,19 0,06 0,36
Итого 1627,39 100,00 16,59 100,00

4. Тепловой баланс стадии синтеза

Тепловой баланс составляется на основе закона сохранения энергии, в соответствии с которым:

,

где Qвх – теплота приходящая с материальными потоками в реактор; Qвх – теплота уходящая с материальными потоками из реактора; Qпотерь – потери.

Как указывалось в разделе 3, ввиду того, что для синтеза выбран РИС-П, все расчеты ведутся на один цикл.

Т1 = 298 К; Т2 = 393 К.

Таблица 4.1 – ТД величины веществ, приходящих с реакционным потоком

Состав реакционного потока Gi,кмоль/ц СР = f(T) ΔНf2980кДж/моль
а в·103 с´·10-5 с·106
1 2 3 4 5 6 7
Н3ВО3 4,10 81,39 -1094,89
Na2SO4 0,04 78,53 71,96 -770,9
С2Н7РО3 12,31 79,39 21,62 -19,21 -784,14
СН5РО3 0,14 68,65 18,23 -17,32 -712,35

Таблица 4.2ТД величины веществ, уходящих с реакционным потоком.

Состав реакционного потока Gj,кмоль/ц СР = f(T) ΔНf2980кДж/моль
а в·103 с´·10-5 с·106
1 2 3 4 5 6 7
Борат метилфосфит (основной) 1,92 432,38 114,35 -36,74 -4049,34
СН3ОН 7,91 15,29 105,27 -31,07 -79,634
СН5РО3непр 0,07 68,65 18,23 -17,32 -712,35
Na2SO4 0,04 78,53 71,96 0,00 -770,9
Н3ВО3 непр 0,08 81,39 -1094,89
С2Н7РО3непр 6,38 79,39 21,62 -19,21 -784,14
Борат метилфосфит (побочный) 0,07 132,59 37,75 -7,83 -712,35
СН3ОН поб 0,07 15,29 105,27 -31,07 -31,07 -79,634
Потери 0,06 432,38 114,35 -36,74 -4049,34

Теплоемкость компонентов определяем как: