(гелевая технология) (англ. Thesol-gelprocess) - технология получения материалов с определенными химическими и физико-механическими свойствами, включающая получение золя и перевод его в гель. Золь-гель технологии используются при производстве неорганических сорбентов, катализаторов и носителей катализаторов, синтетических цеолитов, вяжущих неорганических веществ, керамики со специальными теплофизическими, оптическими, магнитными и электрическими свойствами, стекла, стеклокерамики, волокон, и др.
Переход золей в гели лежит в основе многих современных технологий, связанных с производством волокнистых материалов, световодов, стекол, покрытий, керамических мембран, пленок, инфляционных материалов, катализаторов и адсорбентов, цеолитов, термо и звукоизоляционных и пористых материалов, керамики, композиционных и лакокрасочных материалов, буровых растворов и реагентов и т.д.
Золь-гель процессы лежат в основе гидротермальной обработки кремнеземсодержащих сырья и перспективны для развития технологий стекольной промышленности. Гели кремнезема можно получать из водных растворов кремниевых кислот (золь insitu) или на основе золей с предварительно выращенными частицами, имеющими достаточно плотную структуру твердой фазы (низкая концентрация силанольных групп). Золь-гель технология позволяет получать как монолитные материалы (например, стекла), так и высокодисперсные порошки, обладающие пористой структурой. В качестве исходных материалов могут быть использованы различные соединения кремния.
Процесс получения материалов и композиций на основе золей состоит из нескольких стадий, основными из которых являются следующие.
• Стадия 1. Гидролиз мономерных соединений кремния. Растворы мономера могут быть получены гидролизом галогенидов, сложных эфиров кремниевых кислот или неорганических солей — силикатов щелочных металлов. Наиболее часто используют жидкие ал кил производные кремниевых кислот, такие как Si(OR)4, где R — группы — СН3, — С2Н5 или — С3Н7. В результате гидролиза и поликонденсации происходит образование золя.
• Стадия 2. Формование. Золь заливают в форму. Материал формы выбирают таким образом, чтобы увеличить (или уменьшить) адгезию на стенках формы.
• Стадия 3. Образование геля — превращение свободнодисперсной системы (золя) в связнодиспсрсную. Образованию геля предшествует повышение вязкости системы. Продукты гидролиза (вода, спирт, соли) остаются в трехмерной пространственной структуре геля. На ранних стадиях процесса, когда система сохраняет вязкотекучие свойства, из гелей можно формовать основуволокнистых материалов.
• Стадия 4. Старение (созревание) геля. На этой стадии происходит симерезис — выделение воды в ходе продолжающейся химической реакции поликонденсации, уплотнение структуры геля. Прочность геля растет. Созревание геля проводят до формирования достаточно прочной структуры.
• Стадия 5. Сушка — удаление жидкости из пространственной структуры геля. При удалении свободной воды из геля формируются смачивающие капиллярные мениски, что приводит к возникновению дополнительного (лапласовского) давления. Лапласовское давление зависит от кривизны поверхности жидкости в порах:
где Δр — разность давлений внутри жидкости, имеющей изогнутую и плоскую поверхности:
— радиус кривизны мениска жидкости;
σ — поверхностное натяжение дисперсионной среды. Радиус кривизны мениска связан с радиусом поры соотношением:
где rk— радиус капилляра: ϴ — угол смачивания стенок поры дисперсионной средой.
На стадии сушки капиллярные силы приводят к растрескиванию пространственной структуры геля. Капиллярное давление зависит от размеров пор и смачивания стенок пор дисперсионной средой. Для снижения капиллярного давления сушку геля предпочтительно проводить под вакуумом, а также путем обработки геля химическими реагентами (поверхностноактивными веществами, органическими кислотами и спиртами, фор-мамидом и др.). Эти вещества влияют на все стадии процесса перехода золя в гель, уменьшают межфазное натяжение в порах и снижают действие капиллярных сил при сушке. Размеры пор можно регулировать химической обработкой геля. Условия проведения сушки в значительной степени влияют на свойства ксерогелей (аэрогелей). Для получения монолита рекомендуется сушку проводить в гиперкритических условиях.
• Стадия 6. На этой стадии происходит дегидратация кремнезема путем удаления поверхностных силанольных групп. Одним из способов дегидратации является обработка геля хлорсиланом с целью химического замещения силанольных групп кремнезема. Реакция протекает по схеме:
CI≡Si (CH3) 3 + ≡Si-OH -> ≡Si-0-Si≡(CH 3 ) 3 + HCI.
При 400÷800 С ˚HCI десорбируется. Разложение кремнийор-ганических соединений происходит при температуре > 400 °С, а при проведении процесса ниже 400 °С дегидратация полностью обратимая.
Наноспирали оксида кремния
Во многих научных журналах публикуются статьи, в которых учёные синтезируют и описывают всё новые и новые неорганические структуры. Однако для потенциального применения различных материалов одним из важнейших критериев является воспроизводимость тех или иных выдающихся результатов. Группа французских учёных решила часть этой нелёгкой проблемы в работе, опубликованной недавно в NanoLetters. Они разработали в деталях подход для получения различных наноструктур, начиная от нанотрубок и заканчивая наноспиралями, на основе диоксида кремния с помощью золь-гель технологии.
Золь-гель процесс является достаточно простым примером самоорганизации органических систем. А полученные с помощью данной технологии органические наноструктуры можно использовать в качестве темплатов для создания материалов с самой экзотической морфологией. В частности, данный подход интенсивно изучается и даже успешно и широко применяется для создания материалов на основе диоксида кремния с различной морфологией и контролируемой пористостью.
За основу авторы работы взяли ПАВ (C2H4-1,2-((CH3) 2N⁺C16H33) 2) и TEOS в смеси с бензиламином в качестве катализатора. TEOS подвергался гидролизу на поверхности «шаблонного» органического геля. Затем органика удалялась путём отжига при температуре 450°С. На рисунке 1 представлены микрофотографии полученных образцов.
Синтез монолита аэрогеля ZnO золь-гель методом
Золь-гель метод с применением эпоксидных материалов - достаточно новый метод синтеза оксидов металлов главных и побочных подгрупп. Монолит аэрогеля оксида цинка был получен золь-гель методом из спиртового раствора нитрата цинка и пропилен-оксида в качестве инициатора гелеобразования. Алкогели подвергались сушке как в сверхкритическом CO 2 (с образованием аэрогелей), так и при комнатной температуре (с образованием ксерогеля). Полученные материалы исследовались следующими методами анализа: рентгенофазовый анализ (РФА), сканирующая электронная микроскопия (СЭМ), методы капилярной адсорбции/десорбции азота (БЭТ), фотолюминесценция (ФЛ). Отжиг полученных аэрогелей при температуре 250°С позволяет получить материал с хорошими фотолюминесцентными свойствами при сохранении высокой пористости.
В последнее десятилетие большой интерес вызывает дизайн и получение функциональных материалов на основе наноструктурированных систем с заданными физико-химическими свойствами. Это, безусловно, относится к системам на основе оксида цинка.
Начиная с 60-х годов двадцатого столетия синтезу тонких пленок оксида цинка уделяется большое внимание в связи с тем, что они могут применяться в качестве сенсоров, трансдюсеров, а также катализаторов. В последние несколько десятилетий развитие нанотехнологий и открытие различных квантовых эффектов в наночастицах показало, что работа большинства новых устройств будет основано на уникальных свойствах наноматериалов. Наноматериалы на основе оксида цинка привлекают большой интерес в связи с тем, что они проявляют как пьезоэлектрические свойства, так и свойства широкозонного полупроводника (Eg=3.37 эВ), а также обладают большой энергией связывания экситонов (60 эВ).
Аэрогели – материалы с большой площадью поверхности, малой плотностью, состоящие из блоков частиц, соединенных вместе и образующих высокопористую структуру. Благодаря своим свойствам аэрогели имеют большой потенциал применения: материалы для адсорбции, фильтрации и гетерогенного катализа, в качестве термоизоляторов, электродов для батарей и конденсаторов.
Чаще всего, для синтеза материалов на основе оксида цинка с большой площадью поверхности используется золь-гель метод. Обычно, оксид цинка «встраивают» в аморфную или частично-кристаллическую матрицу SiO 2, для образования которой используются алкоксиды кремния. При этом, в литературе практически отсутствуют данные по образованию чистых монолитов аэрогелей на основе оксида цинка из алкоксидов, что связано с их нестабильностью. В последнее время, для синтеза аэрогелей стал применяться новый золь-гель метод синтеза оксидов переходных металлов и металлов главных групп. Метод заключается в использовании простых неорганических солей и эпоксидов в последующей реакции полимеризации. Одним из преимуществ эпоксидного метода является использование простых солей (т.е. нитратов и галогенидов) вместо алкоксидных прекурсоров. В данной работе этот метод использовался для получения монолита аэрогеля оксида цинка. Данный метод является дешевым, воспроизводимый и требует небольшое количество стадий для получения монолита.
Синтез геля ZnO. В настоящей работе исходными рабочими веществами являлись Zn(NO 3) 2 ∙6H 2 O (J.T. Baker), метанол (Fisher), этанол (100%, Fisher), изопропанол (Fisher), ацетон (Mallinckrodt), а также пропилен-оксид (AlfaAesar). Дистиллированную воду получали, используя систему Easy Pure II, Barnstead International.