Смекни!
smekni.com

Физико-химические свойства нефти, газа, воды и их смесей (стр. 3 из 5)

(1.48)

где

- вязкость сепарированной нефти при стандартных условиях, мПа*с

Молярную массу пластовой нефти можно рассчитать по формулам, аналогичным (1.48):

, если
мПа*с (1.49)

, если
мПа*с (1.50)

или по двухпараметрической формуле


(1.51)

При отсутствии данных по молярной массе сепарированной нефти и ее вязкости, а также плотности газонасыщенной нефти молярную массу пластовой нефти можно определить по формуле:

(1.52)

Зависимость вязкости сепарированной нефти от температуры

Удовлетворительная связь между вязкостью сепарированной нефти и температурой описывается уравнением Вальтерра:

(1.53)

где

- относительная кинематическая вязкость сепарированной нефти при температуре t, численно совпадающей с кинематической вязкостью нефти, выраженной в мм2/сек; а1 а2 – эмпирические коэффициенты, зависящие от состава нефти. Для применения формулы (1.53) необходимо знание экспериментальных значений вязкости нефти при двух температурах, подставляя которые в (1.53) можно определить коэффициенты а1 и а2.

Используя два экспериментальных значения вязкости нефти при двух температурах 20 и 50 оС, температурную зависимость динамической вязкости сепарированной нефти можно описать уравнением (1.54):

(1.54)

где

- относительные динамические вязкости сепарированной нефти при атмосферном давлении и температурах 20, 50 и tоС соответственно, численно равные динамической вязкости сепарированной нефти, выраженной в мПа*с.

Если известно только одно экспериментальное значение вязкости нефти при какой-нибудь температуре t0, то значение ее при другой температуре t можно определить по формуле (1.55):

(1.55)

где

,
- динамическая вязкость нефти при температуре t и t0, а и С – эмпирические коэффициенты: при
1000мПа*с С=10 1/мПа*с; а= 2,52*10-3 1/оС; при 10
1000мПа*с С=100 1/мПа*с; а= 1,44*10-3 1/оС; при
С=1000 1/мПа*с; а= 0,76*10-3 1/оС.

При отсутствии экспериментальных данных для ориентировочных оценок вязкости нефти при 20оС и атмосферном давлении можно пользоваться следующими формулами:

Если

кг/м3,

то

(1.56)

Если

кг/м3,

то

(1.57)

Где

- вязкость и плотность сепарированной нефти при 20 оС и атмосферном давлении, мПа*с и кг/м3 соответственно.

Вязкость газонасыщенной нефти

По формуле Чью и Коннели можно рассчитать вязкость газонасыщенной нефти при давлении насыщения:

(1.58)

где

- вязкость нефти, насыщенной газом, при температуре t и давлении насыщения, мПа*с,
- вязкость сепарированной нефти при температуре t, мПа*с, А и В – эмперические коэффициенты, определяемые по формулам:

А= ехр

В= ехр

Теплоемкость нефти

Теплоемкость нефти может быть рассчитана по формуле:


гидравлический расчет трубопроводов, транспортирующих однофазные жидкости при постоянной температуре

Гидравлический расчет простых трубопроводов сводится к определению одного из следующих параметров: пропускной способности Q; необходимого начального давления (po) при заданном конечном (pк); диаметра трубопровода.

Определение пропускной способности

Поскольку коэффициент гидравлического сопротивления зависит от числа Рейнольдса, а, следовательно, и от неизвестного Q, задачи решают графоаналитичеким способом. Для этого вначале задаются несколькими произвольными значениями Q и определяют линейную скорость потока:

(2.1)

Затем рассчитывают число Рейнольдса и определяют режим движения жидкости:

(2.2)

В зависимости от него находят коэффициент гидравлического сопротивления:

При Re

2000 ( ламинарный режим)

(2.3)

При 2000

Re
4000 (критический режим)

(2.4)

При Re>4000 (турбулентный режим) для расчета используют формулу Альтшуля:

(2.5),

или частные формулы для трех областей турбулентного режима:

Зона гладкого трения 4000<Re<10D/kэ (kэ - эквивалентная шероховатость внутренней поверхности труб, мм)

(2.6)

Зона смешанного трения 10D/kэ <Re<500D/kэ

Зона шероховатого трения Re>500D/kэ -

(2.5, а)

После этого рассчитывают полную потерю напора (давления) в трубопроводе по формуле:

;
(2.7)

и строят график зависимости

или
и по заданному
Н или
Р находят искомую пропускную способность.

Можно воспользоваться рекомендованными в специальной литературе значениями оптимальной скорости движения жидкости в трубопроводе в зависимости от вязкости (табл.1). В этом случае по известной или рассчитанной вязкости жидкости выбирают оптимальную линейную скорость течения. По известному диаметру рассчитывают пропускную способность и полученное значение проверяют путем расчета полной потери давления в трубопроводе при найденной пропускной способности. Если полная потеря давления выше заданной – задаются другой скоростью.

Таблица 1 – Рекомендуемые оптимальные скорости движения жидкости в трубопроводе в зависимости от вязкости

Кинематическая вязкость жидкости ( при температуре перекачки, см2/сек Рекомендуемая скорость, м/сек
Во всасывающем трубопроводе В нагнетательном трубопроводе
0,01-0,060,06-0,120,12-0,280,28-0,720,72-1,461,46-4,384,38-9,77 1,51,41,3121,11,00,8 2,52,22,01,51,21,11,0

Определение необходимого давления

При известном начальном или конечном напоре (давлении) найти напор (давление) в противоположном конце трубопровода можно, зная полную потерю напора (давления) в трубопроводе, т.е. потерю напора (давления) на трение, преодоление разности геодезических отметок начала и конца трубопровода, преодоление местных сопротивлений (сужений, поворотов, задвижек и т.п.). Расчет полной потери напора (давления) производят следующим образом. Вначале находят линейную скорость течения жидкости по формуле (2.1), затем по формуле (2.2) – Re, коэффициент гидравлического сопротивления (ф. 2.3-2.6) и

Н (
Р). Начальное давление рассчитывают по формуле: