q – удельная тепловая нагрузка, Вт/м2;
r – теплота парообразования, кДж/кг;
T, t – температура, град;
W, w – производительность по испаряемой воде, кг/с;
x – концентрация, % (масс.);
α – коэффициент теплоотдачи, Вт/(м2 ∙ К);
ρ – плотность, кг/м3;
μ – вязкость, Па ∙ с;
λ – теплопроводность, Вт/(м ∙ К);
σ – поверхностное натяжение, Н/м;
Re – критерий Рейнольдса;
Nu – критерий Нуссельта;
Pr – критерий Прандтля.
Индексы:
1, 2, 3 – первый, второй, третий корпус выпарной установки;
в – вода;
вп – вторичный пар;
г – греющий пар;
ж – жидкая фаза;
к – конечный параметр;
н – начальный параметр4
ср – средняя величина;
ст – стенка.
1. Определение поверхности теплопередачи выпарныхаппаратов
Поверхность теплопередачи каждого корпуса выпарной установки определяют по основному уравнению теплопередачи, м2:
(1)Для определения тепловых нагрузок Q, коэффициентов теплопередачи К и полезных разностей температур Δtп необходимо знать распределение упариваемой воды, концентраций растворов и их температур кипения по корпусам. Эти величины находят методом последовательных приближений.
Первое приближение.
Производительность установки по выпариваемой воде определяют из уравнения материального баланса:
(2)где
– расход упариваемого раствора, кг/с; начальная концентрация раствора, % (масс.); конечная концентрация раствора, % (масс.).Подставив, получим:
кг/с.1.1 Расчёт концентраций упариваемого раствора
Распределение концентраций раствора по корпусам установки зависит от соотношения нагрузок по выпариваемой воде в каждом аппарате. В первом приближении на основании практических данных принимают, что производительность по выпариваемой воде распределяется между корпусами в соответствии с соотношением:
где
производительность по испаряемой воде в первом корпусе, кг/с; производительность по испаряемой воде во втором корпусе, кг/с; производительность по испаряемой воде в третьем корпусе, кг/с;Тогда
кг/с, кг/с, кг/с.Далее рассчитывают концентрации растворов в корпусах:
(7,9 %), (12,24 %), (30%).Концентрация раствора в последнем корпусе х3 соответствует заданной концентрации упаренного раствора хк.
1.2 Определение температур кипения растворов
Общий перепад давлений в установке равен, МПа:
(3)где
давление греющего пара в первом корпусе, МПа; давление греющего пара в барометрическом конденсаторе, МПа.Подставив, получим, МПа:
В первом приближении общий перепад давлений распределяют между корпусами поровну. Тогда давления греющих паров в корпусах (в МПа) равны:
РГ1 = 0,4
Давление пара в барометрическом конденсаторе:
Что соответствует заданной величине РБК.
По давлениям паров находим их температуры и энтальпии [2]:
Давление, Мпа | Температура, °С | Энтальпия, кДж/кг |
Рг1 = 0,4 | tг1 = 143,5 | I1 = 2739,6 |
Рг2 = 0,277 | tг2 = 131 | I2 = 2722 |
Рг3 = 0,153 | tг3 = 112,1 | I3 = 2708,4 |
Рбк = 0,03 | tбк = 69 | Iбк = 2623,4 |
При определении температуры кипения растворов в аппаратах исходят из следующих допущений. Распределение концентраций раствора в выпарном аппарате с интенсивной циркуляцией практически соответствует модели идеального перемешивания. Поэтому концентрацию кипящего раствора принимают равной конечной в данном корпусе и, следовательно, температуру кипения раствора определяют при конечной концентрации.
Изменение температуры кипения по высоте кипятильных труб происходит вследствие изменения гидростатического давления столба жидкости. Температуру кипения раствора в корпусе принимают соответствующей температуре кипения в среднем слое жидкости. Таким образом, температура кипения раствора в корпусе отличается от температуры греющего пара в последующем корпусе на сумму температурных потерь от температурной (Δ’), гидростатической (Δ”) и гидродинамической (Δ”’) депрессий.
Гидродинамическая депрессия обусловлена потерей давления пара на преодоление гидравлических сопротивлений трубопроводов при переходе из корпуса в корпус. Обычно в расчётах принимают Δ”’ = 1,0 – 1,5 град на корпус. Примем для каждого корпуса Δ”’ = 1 град. Тогда температуры вторичных паров в корпусах (в °С) равны:
°С °С °ССумма гидродинамических депрессий:
°СПо температурам вторичных паров определим их давления [2]:
Температура, °С | Давление, МПа |
tвп1 = 132 | Рвп1 = 0,2866 |
tвп2 = 113,1 | Рвп2 = 0,1579 |
tвп3 = 70 | Рвп3 = 0,0312 |
Гидростатическая депрессия обусловлена разностью давлений в среднем слое кипящего раствора и на его поверхности. Давление в среднем слое кипящего раствора Рср каждого корпуса определяется по уравнению:
(4)где РВП – давление вторичных паров, МПа; Н – высота кипятильных труб в аппарате, м; ρ – плотность кипящего раствора, кг/м3; ε – паронаполнение (объёмная доля пара в кипящем растворе), м3/м3.
Для выбора значения Н необходимо ориентировочно оценить поверхность теплопередачи выпарного аппарата FОР. При кипении водных растворов можно принять удельную тепловую нагрузку аппарата с естественной циркуляцией q = 20000 – 50000 Вт/м2. Примем q = 20000 Вт/м2. Тогда поверхность теплопередачи первого корпуса ориентировочно равна:
м2где r1 = 2178,2 кДж/кг – теплота парообразования вторичного пара [2].
По ГОСТ 11987-81 трубчатые аппараты с естественной циркуляцией и вынесенной греющей камерой (тип 1, исполнение 2) состоят из кипятильных труб высотой 4 и 5 м при диаметре dН = 38 мм и толщине стенки δСТ = 2 мм. Примем высоту кипятильных труб Н = 4 м. При пузырьковом (ядерном) режиме кипения паронаполнение составляет ε = 0,4 – 0,6. Примем ε = 0,5. Плотность водных растворов при температуре 35 °С и соответствующих концентрациях в корпусах равна [3]:
ρ1 = 1072 кг/м3; ρ2 = 1095 кг/м3; ρ3 = 1323 кг/м3.
При определении плотности растворов в корпусах пренебрегаем изменением её с повышением температуры от 35 °С до температуры кипения ввиду малого значения коэффициента объёмного расширения и ориентировочно принятого значения ε.
Давления в среднем слое кипятильных труб корпусов (в Па) равны:
Этим давлениям соответствуют следующие температуры кипения и теплоты испарения растворителя [2]:
Давление, МПа | Температура, °С | Теплота испарения, кДж/кг |
Р1ср = 0,2971 | t1ср = 133 | rвп1 = 2165,2 |
Р2ср = 0,1686 | t2ср = 115,3 | rвп2 = 2214 |
Р3ср = 0,0442 | t3ср = 78,2 | rвп3 = 2311 |
Определяем гидростатическую депрессию по корпусам (°С):