Отношение вылета к высоте ребра l/h рекомендуется принимать равным 0,5.
Расчётная толщина ребра определяется по формуле:
(48)где G – максимальный вес аппарата, МН (обычно бывает во время испытания, когда аппарат заполнен водой); n – число лап (не менее двух); z- число рёбер в одной лапе (1 или 2); σс.д – допускаемое напряжение на сжатие (можно принять равным 100 МН/м2); l – вылет опоры, м. Значение коэффициента k рекомендуется предварительно принять k = 0,6. Если при этом δ получится не менее l/13, то расчётная величина δ является окончательной. В противном случае значение коэффициента k необходимо уменьшить с пересчётом толщины δ и последующей проверкой l/δ по графику.
Определим основные размеры опоры (лапы) для вертикального цилиндрического аппарата, подвешенного на четырёх лапах по следующим данным: максимальный вес аппарата G = 0,085 МН, число лап n = 4; конструкция лап – двухрёберная, z = 2; вылет лапы l = 0,2 м; Ск = 1 мм; диаметр корпуса Dв = 1,8 м.
Пренебрегаем отношением вылета лапы к высоте ребра l/h = 0,5.
Тогда
м.Толщину ребра определим по формуле (48):
мОтношение
> δ = 0,004, поэтому уменьшаем значение k до 0,27, при котором по графику .Пересчитываем δ:
м > м.Принимаем толщину ребра δ = 10 мм.
Общая длина сварного шва определяется по формуле:
Прочность сварного шва проверим по формуле:
(50)где Lш – общая длина сварных швов, м; hш – катет сварного шва, hш = 0,008 м; τш.с. – допускаемое напряжение материала на срез, τш.с. = 80 МН/м2.
То есть прочность обеспечена.
Определим опоры аппарата. При определении нагрузки на подвесную опорную лапу все действующие на аппарат нагрузки приводят к осевой силе Р, определяемой максимальным весом аппарата при эксплуатации или при гидравлических испытаниях, и моменту М, зависящему от конструкции аппарата, и т. д. При учебных расчётах момент М можно принять равным нулю. Нагрузку на одну опору рассчитывают по соотношению:
(51)Если М = 0, следовательно
, значит ,где λ1 – коэффициент, зависящий от числа опор z. Примем z = 4, значит λ1 = 2.
Рассчитаем осевую силу Р = m ∙ g. Масса аппарата при гидравлических испытаниях равна:
m = mап + mводы (52)
mап = 8500 кг; mводы = V ∙ ρ, где V = ΣVсост.ч..
Зная технические характеристики аппарата найдём:
м3 м3V = 3,14 + 20,57 + 2,88 = 26,59 м3
mводы = V ∙ ρ = 26,59 ∙ 1000 = 26590 кг
m = 13000 + 26590 = 39590 кг
Р = m ∙ g = 39590 ∙ 9,81 = 388378 Н
кНПо ОСТ 26 – 665 – 79 [10] выбираем опору (тип 2) со следующими характеристиками:
Q,kH | а | а1 | а2 | в | в1 | в2 | с | с1 | h | h1 | s1 | k | k1 | d | dб |
250 | 360 | 540 | 300 | 800 | 360 | 350 | 65 | 240 | 940 | 40 | 24 | 75 | 220 | 42 | - |
Заключение
Целью данного курсового проекта являлся расчет выпарной установки непрерывного действия для выпаривания растворяя сульфата натрия от начальной концентрации соли 6 % (масс.) до конечной концентрации 30% (масс.).
В ходе проектирования произведены следующие расчеты: составление и описание технологической схемы выпарной установки, расчет основного аппарата, подбор вспомогательного оборудования (теплообменной и насосной аппаратуры), а также был произведен расчет на прочность.
Маркировку выбранного оборудования сведем в таблицу 21.
Таблица 21Маркировка оборудования
№ | Наименование | Марка |
1 | Насос центробежный | Х 45/54 |
2 | Вакуум-насос | ВВН-3 |
3 | Теплообменник | 600 ТНВ-8-М1О/20-6-4 гр. Б |
4 | Конденсатоотводчик | 45ч12нж |
5 | Ёмкость начального раствора | ГЭЭ1-1-63-0,6 |
6 | Ёмкость упаренного раствора | ГЭЭ1-1-12,5-0,6 |
7 | Обечайка | Х 18Н10Т |
8 | Барометрический конденсатор | КБ-2-600 |
9 | Опора | 2-1800-25-125-800 |
Произведенный анализ работы показал, что основной процесс теплопередачи сосредоточен в греющей камере выпарного аппарата. Интенсивность теплопередачи повышается в аппаратах с вынесенной циркуляционной трубой, т. к. раствор в ней не кипит и парожидкостная смесь не образуется. В них, по сравнению с аппаратами с центральной циркуляционной трубой, кратность циркуляции и коэффициент теплоотдачи выше. Еще большей эффективности можно добиться, используя аппараты с вынесенной греющей камерой. В них вследствие увеличенного гидростатического столба жидкости раствор кипит не в греющих трубах, а в трубе вскипания из-за перехода в зону пониженного гидростатического давления. Таким образом, уменьшается отложение накипи на теплообменной поверхности греющих труб и увеличивается коэффициент теплопередачи.
В итоге был получен следующий результат: выпарной аппарат с естественной циркуляцией и вынесенной греющей камерой общей высотой 13 м, диаметром сепаратора 1,8 м и диаметром греющей камеры 1 м.
Библиографический список
1. Дытнерский, Ю. И. Основные процессы и аппараты химической технологии. Пособие по проектированию [текст] / Ю. И. Дытнерский, – М.: Химия, 1983, 270 с.
2. Павлов, К. Ф. Примеры и задачи по курсу процессы и аппараты химической технологии [текст] / К. Ф. Павлов, П. Г. Романков, А. А. Носков, – М.: Химия, 1970, 624 с.
3. Справочник химика, т III, М.: Химия, 1964, 1008 с.
4. Справочник химика, т V, М.: Химия, 1968, 976 с.
5. Воробьёва, Г. Я. Коррозионная стойкость материалов в агрессивных средах химических производств [текст] / Г. Я. Воробьёва, М.: Химия, 1975, 816 с.
6. Касаткин, А. Г. Основные процессы и аппараты химической технологии [текст] / А. Г. Касаткин, М.: Химия, 1973, 750 с.
7. Викторов, М. М. Методы вычисления физико-химических величин и прикладные расчёты [текст] / М. М. Викторов, Л.: Химия, 1977, 360 с.
8. Каталог УКРНИИХИММАШа. Выпарные аппараты вертикальные трубчатые общего назначения. М.: ЦИНТИХИМНЕФТЕМАШ, 1979, 38 с.
9. Лащинский, А. А. Основы конструирования и расчёта химической аппаратуры [текст] / А. А. Лащинский, А. Р. Толчинский, Л.: Машиностроение, 1970, 752 с.
10. Лащинский, А. А. Конструирование сварочных химических аппаратов [текст] / А. А. Лащинский, Л.: Машиностроение, 1981, 382 с.
Приложения
Приложение 1
Основные характеристики центробежных насосов, используемых в химической промышленности