Целлюлоза
Целлюлоза, вероятно, – самый известный полимер клеточной стенки. Подсчитано, что ежегодно на Земле синтезируется 180 миллиардов тонн целлюлозы (Delmer, 1999). Кроме высших растений, целлюлозу способны синтезировать большинство водорослей, некоторые слизевики (Dictyostelium), ряд видов бактерий (включая цианобактерии, а также Acetobacterxylinum, Agrobacteriemtumifaciens), некоторые грибы, а среди животных организмов – оболочники (Tunicata) (Saxena, Brown, 2005).
Строение молекул целлюлозы с первого взгляда производит впечатление очень простого, поскольку они представляют собой линейные молекулы гомополимера, состоящего из глюкозы. Все остатки глюкозы находятся в пиранозной форме и соединены между собой первым атомом углерода одной молекулы глюкозы и четвертым атомои углерода следующей молекулы. Тип связи одинаков для всех мономеров – b. Все вместе это записывается как b – (1®4) – D-глюкан. Степень полимеризации молекул целлюлозы составляет порядка 10 000, колеблясь в пределах 300 – 15 000.
Цепочки целлюлозы образуют кристаллическую надмолекулярную структуру: несколько дюжин молекул целлюлозы связаны между собой водородными связями (рис. 11) и силами Ван-дер-Вальса в микрофибриллу, толщина которой составляет 5–10 нм. Отдельная молекула целлюлозы обычно имеет степень полимеризации в несколько тысяч молекул глюкозы и достигает длины 2–3 мкм. Внутри микрофибриллы молекулы целлюлозы начинаются и кончаются в разных местах, поэтому микрофибрилла может достигать сотен микрометров в длину и содержать тысячи индивидуальных цепочек. В качестве аналогии можно привести льняную нитку, которую можно сделать неограниченной длины, хотя состоит она из волокон, каждое их которых – не более нескольких сантиметров в длину. Прочность на разрыв (tensilestrength) микрофибрилл целлюлозы выше, чем у стали.
В молекуле целлюлозы глюкозные остатки расположены в одной плоскости, так что формируется плоская, лентообразная цепочка. Внутри микрофибриллы отдельные молекулы расположены параллельно друг другу, то есть все восстанавливающие концы направлены в одну сторону (целлюлоза I). Подобную конфигурацию непросто объяснить с термодинамической точки зрения, поскольку при антипараллельной ориентации появляется возможность для дополнительной водородной связи, что делает такое расположение более вероятным. При самосборке целлюлозные цепи соединяются именно в антипараллельной ориентации (целлюлоза II).
В микрофибрилле высокоупорядоченные, кристаллические участки чередуются с относительно неупорядоченными, аморфными, которые отличаются по своим свойствам. Степень кристалличности (доля упорядоченных участков) в растительных объектах довольно высока и составляет от 60 до 80%. Аморфные участки – «слабое место» микрофибрилл. Различают также Ia (triclinicunit) и Ib (monoclinicunit) структуры целлюлозы I, которые отличаются молекулярной конформацией и упаковкой кристалла (Delmer, 1999). Доля Ia-типа колеблется от 64% у Valoniaдо 20% в волосках семян хлопчатника (Gossipiumhirsutum) (Brett, 2000).
Термин «целлюлоза» (цит. по Franz, Blashek, 1990) был введен в 1838 году А. Payen и сначала использовался для обозначения целого ряда полисахаридов, поскольку не существовало способов их разделения. Аналогом этого термина в русском языке является «клетчатка». Schulze в 1891 году предложил использовать название «целлюлоза» для полисахаридов, устойчивых к разбавленной кислоте и щелочи и дающих в результате гидролиза глюкозу. Несколько позднее Nageli (с использованием поляризованного света) установил кристалличность целлюлозы, которая окончательно была доказана после появления рентгеновского анализа. Химическая природа целлюлозы как b-D – (1®4) – глюкана была установлена в 1932 году В. Хеуорсом (W.N. Haworth). Микрофибриллы целлюлозы, будучи кристаллическим образованием, расположенным снаружи от плазмалеммы, были одной из первых структур, надежно идентифицированных с помощью электронного микроскопа (Frey-Wisslingetal., 1948; Prestonetal., 1948).
Важно помнить, что микрофибриллы не ветвятся, они представляют из себя только «голые палки». Из них одних не удалось бы сформировать сколь-нибудь прочную объемную структуру. Сцепляют их между собой молекулы так называемых связующих гликанов.
Связующие гликаны
Остов молекул связующих гликанов устроен по тому же принципу, что и молекулы целлюлозы. Но к этому остову с определенной периодичностью добавлены боковые ответвления, которые нарушают линейность молекулы полисахарида. Другим способом получения изгибов молекулы является чередование типов связи мономеров внутри нее. В результате получается изогнутая во многих местах молекула, содержащая линейные участки. Этими линейными участками молекулы связующих гликанов взаимодействуют как с молекулами целлюлозы, так и между собой. В результате формируется прочная сеть, состоящая из двух типов молекул: целлюлозы и связующих гликанов. В роли связующих гликанов у разных организмов выступают различные полисахариды.
Ксилоглюкан. У двудольных основным связующим гликаном является ксилоглюкан. Судя по названию, ксилоглюкан – молекула, остов которой сформирован из глюкозы, а боковые цепочки – из ксилозы. Однако название очень упрощено, в нем поименованы лишь основные мономеры. На самом деле в состав боковых цепочек ксилоглюкана входят еще галактоза и фукоза, причем у разных организмов могут быть свои нюансы в составе полимера. В целом же он устроен именно по тому принципу, о котором говорилось выше. Остов молекулы построен точно так же, как молекула целлюлозы, а наличие боковых цепочек приводит к изгибам полисахарида.
Остановимся подробнее на структуре полимера, охарактеризовав на его примере способы графической характеристики полисахаридов. Остов молекулы представляет из себя b-D – (1®4) – глюкан, который ветвится путем присоединения к С-6 атомам глюкозилов остатков ксилозы. В свою очередь, остатки ксилозы могут быть соединены с остатками галактозы или арабинозы, а галактоза – с фукозой.
Расположение боковых цепочек ксилоглюкана является регулярным. Обычно в ксилоглюкане можно выделить повторяющиеся блоки, составленные из 6–11 моносахаридов, пропорции которых варьируют у различных организмов и в различных тканях. У однодольных растений, клеточная стенка которых устроена несколько иначе, чем у двудольных, функции связующих гликанов выполняют глюкан со смешанным типом связи и глюкуроноарабиноксилан.
Глюкан со смешанным типом связи.Глюкан со смешанным типом связей – линейная молекула, в которой чередуются участки, где остатки глюкозы связаны b – (1®4) – связью, как в молекуле целлюлозы, и участки, где они связаны b – (1®3) – связью. Это приводит к изгибам молекулы и делает невозможным формирования водородных связей с другими полимерами по всей длине полисахарида. b – (1®3) – связь обычно встречается через два или три остатка глюкозы, связанных b – (1®4) – связью; примерно 10% (1®4) – олигоглюкозидов могут быть более длинными.
Ксилан. Глюкуроноарабиноксилан. Ксиланы относятся к очень распространенным соединениям, часто являясь ключевыми полисахаридами матрикса вторичных клеточных стенок (например, в древесине). Остов этих молекул состоит из ксилозы – моносахара, конформационно очень схожего с глюкозой, – b-D – (1®4) – ксилан. В боковых цепочках (у С-2 или С-3) присутствует арабиноза и глюкуроновая кислота. Глюкуроновая кислота, присоединенная к ксилану, часто бывает метилированной. Доля ксилозных остатков, к которым присоединены боковые цепочки, состоящие из арабинозы и / или глюкуроновой кислоты, варьирует от 10% до 85%. Чтобы подчеркнуть высокую степень замещенности, ксилан называют глюкуроноарабиноксиланом.
Маннан. Глюкоманнан. Галактоманнан. Галактоглюкоманнан.Неразветвленный маннан – редко встречающийся полисахарид, состоящий из остатков D-маннозы, соединенных b-D – (1®4) связями. Этот полимер способен образовывать агрегаты, напоминающие микрофибриллы целлюлозы.
Глюкоманнаны являются полисахаридами, у которых остов состоит из чередующихся остатков маннозы и глюкозы. Таким образом, его название является иллюстрацией того, что для полисахаридов сложно выработать общие правила наименования (исходя из них, можно было бы предположить, что глюкоза формирует боковые цепочки). b-D – (1®4) – маннозные звенья прерываются b-D – (1®4) – глюкозными участками, доля которых составляет 25–35%.
С другой стороны, существуют сходные полимеры, в остове которых глюкоза отсутствует. В этом случае, название «галактоманнан» сформировано в полном соответствии с правилами номенклатуры полисахаридов, поскольку остов построен из маннозы, а боковые цепочки – из галактозы. Галактоманнаны – известные полисахариды клеточной стенки, присутствующие в семенах некоторых бобовых, где они играют роль запасных веществ.