Смекни!
smekni.com

Функциональные производные карбоновых кислот (стр. 1 из 2)

Функциональные производные карбоновых кислот. Двухосновные карбоновые кислоты. a,b-Ненасыщенные кислоты

Производные карбоновых кислот

1. Галогенангидриды.

При действии галогенидов фосфора или хлористого тионила происходит образование галогенагидридов:

CH3COOH + PCl5 ® CH3COCl + POCl3 + HCl

Галоген в галогенангидридах обладает большой реакционной способностью. Сильный индукционный эффект определяет легкость замещения галогена другими нуклеофилами: -OH, -OR, -NH2, -N3, -CN и др.:

CH3COCl + CH3COOAg ® (CH3CO)2O уксусный ангидрид + AgCl

1. Ангидриды.

Ангидриды образуются при взаимодействии солей кислот с их галогенангидридами:

CH3COONa + CH3COCl ® NaCl + (CH3CO)2O

Ангидриды кислот обладают большой химической активностью и являются, как и галогенангидриды, хорошими ацилирующими агентами.

2. Амиды.

Амиды получают через галогенангидриды

CH3COCl +2 NH3® CH3CONH2ацетамид + NH4Cl

или из аммонийных солей кислот, при сухой перегонке которых отщепляется вода и образуется амид кислоты. Также амиды кислот образуются как побочный продукт при гидролизе нитрилов. Процессы амидирования имеют важное значение в промышленности для производства ряда ценных соединений (N,N-диметилформамид, диметилацетамид, этаноламиды высших кислот).

4. Нитрилы. Важнейшими представителями нитрилов являются ацетонитрил CH3CN (применяется как полярный растворитель) и акрилонитрил CH2=CHCN (мономер для получения синтетического волокна нейрона и для производства дивинилнитрильного синтетического каучука, обладающего масло- и бензостойкостью). Основным способом получения нитрилов является дегидратация амидов на кислотных катализаторах:

CH3CONH2 ® CH3C-CN + H2O

5. Сложные эфиры. Сложные эфиры карбоновых кислот имеют важное практическое значение в качестве растворителей, гидравлических жидкостей, смазочных масел, пластификаторов и мономеров. Их получают этерификацией спиртов кислотами, ангидридами и галогенангидридами или взаимодействием кислот и алкенов:

CH3-CH=CH2 + CH3COOH ® CH3COOCH(CH3)2

Многие эфиры используются в качестве душистых веществ:

CH3COOCH2CH3 грушевая эссенция
CH3CH2CH2COOCH2CH2CH2CH2CH3 ананасовая эссенция
HCOOCH2CH3 ромовая эссенция

Двухосновные насыщенные кислоты

Двухосновные предельные (насыщенные) кислоты имеют общую формулу CnH2n(COOH)2. Из них важнейшими являются:

НООС-СООН - щавелевая, этандикарбоновая кислота;

НООС-СН2-СООН - малоновая, пропандикарбоновая кислота;

НООС-СН2-СН2-СООН - янтарная, бутандикарбоновая кислота;

НООС-СН2-СН2-СН2-СООН - глутаровая, пентандикарбоновая кислота.

Способы получения

Общие методы получения двухосновных кислот аналогичны способам получения одноосновных кислот (окисление гликолей, гидролиз динитрилов, синтез Кольбе - см. Лекцию№27).

1. Окисление оксикислот:

OH-CH2CH2COOH ® HOCCH2COOH ® HOOC-CH2-COOH

2. Окисление циклоалканов.

Это промышленный способ получения адипиновой кислоты HOOC-CH2CH2CH2CH2-COOH из циклогексана.

Побочно образуются также янтарная и щавелевая кислоты. Адипиновая кислота применяется для синтеза волокна найлон 6,6 и пластификаторов.

Химические свойства

Двухосновные кислоты более сильные, чем одноосновные. Это объясняется взаимным влиянием карбоксильных групп, облегчающих диссоциацию:

В целом реакции дикарбоновых кислот и их монокарбоновых аналогов почти не различаются между собой. Механизм реакций образования диамидов, диэфиров и др. из карбоновых кислот тот же, что и для монокарбоновых кислот. Исключение составляют дикарбоновые кислоты, содержащие меньше четырех атомов углерода между карбоксильными группами. Такие кислоты, две карбоксильные группы которых способны реагировать с одной функциональной группой или друг с другом, обнаруживают необычное поведение в реакциях, протекающих с образованием пяти- или шестичленных замкнутых активированных комплексов или продуктов.

Примером необычного поведения карбоновых кислот могут служить реакции, протекающие при нагревании.

1. Декарбоксилирование.

При 150 оС щавелевая кислота разлагается на муравьиную кислоту и СО2:

HOOC-COOH ® HCOOH + CO2

2. Циклодегидратация.

При нагревании g-дикарбоновых кислот, у которых карбоксильные группы разделены атомами углерода, происходит циклодегидратация, в результате чего образуются циклические ангидриды:

3. Синтезы на основе малонового эфира.

Двухосновные кислоты с двумя карбоксильными группами при одном углеродном атоме, т.е. малоновая кислота и ее моно- и дизамещенные гомологи, при нагревании несколько выше их температур плавления разлагаются (подвергаются декарбоксилированию) с отщеплением одной карбоксильной группы и образованием уксусной кислоты или ее моно- и дизамещенных гомологов:

HOOCCH2COOH ® CH3COOH + CO2

HOOCCH(CH3)COOH ® CH3CH2COOH + CO2

HOOCC(CH3)2COOH ® (CH3)2CHCOOH + CO2

Атомы водорода метиленовой группы, находящейся между ацильными группами диэтилового эфира малоновой кислоты (малоновый эфир), обладают кислотными свойствами и дают натриевую соль с этилатом натрия. Эту соль – натрий-малоновый эфир – алкилируют по механизму нуклеофильного замещения SN2. На основе натрий-малонового эфира получают одно- и двухосновные кислоты:

[CH(COOCH2CH3)2]-Na+ + RBr® RCH(COOCH2CH3)2 + 2 H2O ®

R-CH(COOH)2 алкилмалоновая кислота ® R-CH2COOH алкилуксусная кислота + CO2

4. Пиролиз кальциевых и бариевых солей.

При пиролизе кальциевых или бариевых солей адипиновой (С6), пимелиновой (С7) и пробковой (С8) кислот происходит отщепление СО2 и образуются циклические кетоны:

Непредельные одноосновные карбоновые кислоты

Непредельные одноосновные кислоты этиленового ряда имеют общую формулу CnH2n-1COOH, ацетиленового и диэтиленового рядов - CnH2n-3COOH. Примеры непредельных одноосновных кислот:

CH2=CHCOOH акриловая кислота, пропеновая кислота
CH2=CHCH2COOH винилуксусная кислота, 3-бутеновая кислота
CH3CH=CHCOOH кротоновая кислота, 2-бутеновая кислота
CH2=C(CH3)COOH a-метилакриловая кислота, метакриловая кислота, метилпропеновая кислота
CHºCCOOH пропиоловая (пропиновая) кислота
CH3CH2CH=CHCH2CH=CH(CH2)7COOH линоленовая кислота

Непредельные одноосновные кислоты отличаются от предельных большими константами диссоциации. Ненасыщенные кислоты образуют все обычные производные кислот - соли, ангидриды, галогенангидриды, амиды, сложные эфиры и др. Но за счет кратных связей они вступают в реакции присоединения, окисления и полимеризации.

Благодаря взаимному влиянию карбоксильной группы и кратной связи присоединение галогенводородов к a,b-непредельным кислотам происходит таким образом, что водород направляется к наименее гидрогенизированному атому углерода:

CH2=CHCOOH + HBr ® BrCH2CH2COOH b-бромпропионовая кислота

Этиленовые кислоты типа акриловой кислоты и их эфиры значительно легче подвергаются полимеризации, чем соответствующие углеводороды.

отдельные представители

Акриловую кислоту получают из этилена (через хлоргидрин или оксид этилена), гидролизом акрилонитрила или окислением пропилена, что более эффективно. В технике используются производные акриловой кислоты - ее эфиры, особенно метиловый (метилакрилат). Метилакрилат легко полимеризуется с образованием прозрачных стекловидных веществ, поэтому его применяют в производстве органического стекла и других ценных полимеров.

Метакриловая кислота и ее эфиры получают в больших масштабах методами, сходными с методами синтеза акриловой кислоты и ее эфиров. Исходным продуктом является ацетон, из которого получают ацетонциангидрин, подвергают дегидратации и омылению с образованием метакриловой кислоты. Этерификацией метиловым спиртом получают метилметакрилат, который при полимеризации или сополимеризации образует стекловидные полимеры (органические стекла) с весьма ценными техническими свойствами.