Смекни!
smekni.com

Фракционный состав нефти (стр. 3 из 3)

Удобно в качестве испаряющего агента использовать легкие нефтяные фракции — лигроино-керосино-газойлевую фракцию, т.к. это исключает применение открытого водяного пара при перегонке сернистого сырья, вакуума и вакуумсоздающей аппаратуры, и, в то же время, избавляет от указанных сложностей работы с инертным газом.

Чем ниже температура кипения испаряющего агента и больше его относительное количество, тем ниже температура перегонки. Однако чем легче испаряющий агент, тем больше его теряется в процессе перегонки. Поэтому в качестве испаряющего агента рекомендуется применять лигроино-керосино-газойлевую фракцию.

4. Кривые ИТК и ОИ как характеристики нефти

Однократная перегонка осуществляется испарением или дросселированием жидкой смеси. В связи с этим для получения заданной доли отгона сырья однократное испарение позволяет вести процесс разделения с меньшей вероятностью термического разложения компонентов смеси. В том случае, когда летучести компонентов разделяемой смеси различаются значительно и остаток представляет собой смесь тяжелых углеводородов со смолисто-асфальтеновыми соединениями, разделение методом дросселирования может вызвать достаточно резкое понижение температуры и увеличение вязкости остатка.

Вакуум и водяной пар понижают парциальное давление компонентов смеси и вызывают тем самым кипение жидкости при меньшей температуре. Простая перегонка нефтяных смесей изображается кривыми однократного испарения (ОИ), устанавливающими зависимость доли отгона от температуры нагрева смеси. Кривые ОИ характеризуют также условные температуры кипения смеси при нечетком их разделении, а начальные и конечные точки кривой ОИ определяют соответственно истинные температуры кипения жидких смесей и конденсации паровых смесей заданного состава. Для равномерно выкипающей смеси кривые ОИ имеют незначительную кривизну в начале и в конце и являются практически прямыми линиями.

При определении фракционного состава нефть и нефтепродукты перегоняют в стандартном приборе при определенных условиях и в системе координат ("температура-отгон") строят график выкипания отдельных углеводородов и их смесей. При нагревании нефтепродукта в паровую фазу, прежде всего, переходят низкокипящие компоненты, обладающие высокой летучестью. По мере отгона низкокипящих компонентов остаток обогащается высококипящими компонентами. Чтобы сделать кипение безостановочным, жидкий остаток непрерывно подогревают. При этом в паровое пространство переходят все новые и новые компоненты с все возрастающими температурами кипения. Отходящие пары конденсируются в измерительной емкости или отбираются по интервалам температур кипения компонентов в виде отдельных нефтяных фракций. Данные разгонки представляют в виде таблицы или графика ("температура кипения - % отгона"). Линии на этом графике называют кривыми разгонки или кривыми фракционного состава. При четком делении смеси (то есть при использовании лабораторных методов периодической ректификации) получают кривые истинных температур кипения (ИТК), при нечетком делении - кривые условных температур кипения (кривые стандартной разгонки). Наиболее важными являются кривые ИТК. Их используют для определения фракционного состава сырой нефти, расчета физико-химических и эксплуатационных свойств нефтепродуктов и параметров технологического режима процессов перегонки и ректификации нефтяных смесей. Различие физико-химических свойств углеводородов используется для разделения топлив на узкие группы углеводородов и идентификации этих групп, а аддитивность некоторых свойств - для расчета количественного содержания групп углеводородов в смеси. При исследовании новых нефтей фракционный состав определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками. Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования кривую истинных температур кипения. Кривая ИТК показывает потенциальное содержание в нефти отдельных (узких) фракций, являющихся основой для последующей их переработки и получения товарных нефтепродуктов (автобензинных, реактивных, дизельных и энергетических топлив, смазочного масла и др.).

Заключение

Нефть, нефтяные фракции и нефтепродукты представляют собой, как правило, смеси очень большого числа близко кипящих компонентов. Число компонентов в бензиновых фракциях может достигать 500, а в масляных фракциях еще больше. Как правило, их разделяют путем перегонки на отдельные части, каждая из которых является менее сложной смесью. Нефтяные фракции, в отличие от индивидуальных соединений, не имеют постоянной температуры кипения. Они выкипают в определенных интервалах температур, то есть имеют температуры начала и конца кипения (Тнк и Ткк). Тнк и Ткк зависят от химического состава фракции. Таким образом, фракционный состав нефти и нефтепродукта показывает содержание в них (в объемных или весовых процентах) различных фракций, выкипающих в определенных температурных пределах. Этот показатель является важнейшей характеристикой нефтяных смесей и имеет большое практическое значение.

Полные данные о характеристике состава нефти и нефтепродуктов позволяют решать главные вопросы переработки: проводить сортировку нефти и нефтепродуктов на базах смешения, определять варианты переработки нефти (топливный, топливно-масляный, или нефтехимический), выбирать схемы переработки, определять глубину отбора масляных фракций от потенциала (отношение массы фракций, выделенных на установке, к их массе, содержащейся в нефти), выход отдельных фракций. Знание фракционного состава нефтепродукта позволяет рассчитать их важнейшие эксплуатационные характеристики. Вследствие особенностей химического состава нефтей разных месторождений, физико-химические характеристики идентичных по температуре кипения фракций будут неодинаковы. Каждая нефть имеет свою характерную кривую разгонки, обусловленную специфическим распределением в ней отдельных компонентов (углеводородных и неуглеводородных соединений) как по содержанию, так и по температуре кипения.

Изменения физико-химических характеристик взаимно коррелируют. На этом основаны многие методы определения характеристик и состава нефти и нефтепродуктов, и в настоящее время накоплен значительный объем информации о корреляционных взаимосвязях. Однако большинство из них нашли ограниченное применение из-за громоздкости и неприспособленности для использования в информационных технологиях.

Список используемой литературы

1. Обрядчиков С. Н., Принципы перегонки нефти, М.— Л., 1940.

2. Дияров И.Н., Батуева И.Ю., Садыков А.Н., Солодова Н.Л. Химия нефти. Руководство к лабораторным занятиям: Учебное пособие для вузов. - Л.: Химия, 1990.

3. Богомолов А. И., Гайле А.А., Громова В.В. и др.Химия нефти и газа: Учебное пособие для вузов / Под ред. В. А. Проскурякова, А. Е. Драбкина.— 3-е изд., доп. и испр. — СПб: Химия, 1995.

4. Батуева И. Ю., Гайле А.А., Поконова Ю.В. Химия нефти. Под редакцией 3. И. Сюняева. Ленинград: Химия, 1984.

5. Соколов В. Л., Фурсов А. Я. Поиски и разведка нефтяных и газовых месторождений. - М.: Недра, 2000. - 296 с.

6. Справочник нефтепромысловой геологии/Под ред. Н. Е. Быкова. - Москва: Недра, 2001. - 525 с.

7. Спутник нефтегазопромыслового геолога: Справочник/Под ред. И. П. Чаловского. - М.: Недра, 2000. - 376 с.

8. Буланов А.Н.«Регламент работы цеха первичной подготовки нефти на «Быстринском» НГДУ», Сургут, ОАО «Сургутнефтегаз», 1997

9. Эрих В.Н., Расина М.Г., Рудин М.Г. "Химия и технология нефти и газа". Ленинград, "Химия", 1972.

10. Скобло А.И., Трегубова И.А., Егоров Н.Н. "Процессы и аппараты, нефтеперерабатывающей и нефтехимической промышленности". Москва, Государственное научно-техническое изд., 1962.

11. Нестеров И.И., Рябухин Г.Е. "Тайны нефтяной колыбели". Свердловск, Средне-Уральское книжное издательство, 1984.

12. Судо М. М. "Нефть и горючие газы в современном мире". Москва, Недра, 1984.

13. Дриацкая З.В., Мхчиян М.А., Жмыхова Н.М. и другие «Нефти СССР. Том 4». Москва, «Химия», 1974.

14. Еременко Н. А. Справочник по геологии нефти и газа. - Москва: Недра, 2002. - 485 с.


Приложение