Кинетический анализ гипотез – важный этап рациональной стратегии, предшествующий планированию кинетического эксперимента с целью дискриминации гипотез. Каждую гипотезу необходимо проанализировать с учётом различных сочетаний быстрых и медленных стадий (приближения квазистационарности, квазиравновесия, возможных лимитирующих стадий), с учётом различной структуры материальных балансов по катализатору, а также природы поверхности в случае гетерогенных катализаторов и состояния комплексов в растворе в случае гомогенного катализа комплексами металлов.
Первый этап формально-кинетического анализа гипотез о механизме – стехиометрический анализ механизмов. Основой такого анализа является теория маршрутов Хориути-Тёмкина. Важность теории (или метода) маршрутов, позволяющей найти итоговые уравнения реакций, исходя из механизма процесса, а не только на основе материального баланса, видна из следующего примера.
Пример 1. Материальный баланс процесса описывается уравнением (1), а схема механизма – уравнениями (2 – 3):
(1) (2) (3) (4)где М – катализатор, МА и МВ – промежуточные вещества.
Если сложить стадии механизма (для стационарных или квазистационарных режимов), промежуточные вещества и катализатор исчезают и получается итоговое уравнение
(5)С позиций стехиометрии и материального баланса уравнения (1) и (5) линейно зависимы. С позиций кинетических скорость реакции превращения А в В есть скорость по итоговому уравнению (5) и именно эта скорость R, как разность скоростей в прямом (R+) и обратном (R–) направлениях (R = R+ – R–) соответствует механизму (2 – 4). При [А], [В] >> [М]Σ и [М]Σ >> [МА], [МВ] ([М]Σ @ [М]) получаем для стационарного или квазистационарного режимов
(6)При равновесии (R+ = R–) из (6) получается константа равновесия реакции (5) К = [А]2 / [В]2. Если возникает задача найти скорость прямой реакции, используя скорость обратной реакции и соотношение (7)
, (7)где DG – изменение изобарно-изотермического (химического) потенциала для итогового уравнения в ходе реакции, то для записи DG также следует использовать уравнение, вытекающее из механизма, в данном случае, уравнение (5). Соотношение (7) справедливо только для одномаршрутных реакций.
Напомним определения маршрута реакции. Маршрутом реакции называется такая последовательность стадий, входящих в механизм сложной реакции, которая при сложении уравнений стадий, умноженных на особые стехиометрические числа стадий νj, даёт итоговое уравнение, не содержащее промежуточных веществ (интермедиатов) – важнейших участников механизма сложной реакции.
Маршрутом реакции называется также и вектор, компонентами которого являются стехиометрические числа стадий νj. Для механизма (2 – 4) таким вектором являются набор из трёх компонент ν2 = 1, ν3 = 1, ν4 = 1:
= (1, 1, 1). Другой набор стехиометрических чисел = (0.5, 0.5, 0.5) даёт уравнение А = В, но как мы видели выше, такое итоговое уравнение противоречит кинетике стационарного процесса.Число линейно-независимых маршрутов определяется по уравнению Хориути (8)
P = S – I + W, (8)
где I – общее число интермедиатов, W – число независимых линейных законов сохранения (число линейных связей между интермедиатами) NI = I – W. Очевидно, что NI = rank BX, где BX – матрица стехиометрических коэффициентов для интермедиатов (BX – блок стехиометрической матрицы механизма ВМ).
Для каталитических реакций с одним типом катализатора (или активных центров) W = 1, т.е. имеется один стехиометрический закон сохранения – материальный баланс по катализатору. В случае двух катализаторов, участвующих в механизме реакции, W = 2.
Для нахождения векторов стехиометрических чисел
,т.е. матрицы Г, решается система уравнений (9)Для решения системы (9) используем только линейно-независимые столбцы матрицы ВХ и один вектор из матрицы Г. Например, для двухмаршрутного каталитического процесса с катализатором М и первым интермедиатом Х1 имеем матрицу ВХ (rank BX = 2) S = 4 и вектор
.Получим 2 уравнения:
(10)Для решения системы двух уравнений с четырьмя неизвестными разделим переменные на независимые, значения которых задаём, и зависимые
. (11)При таком разделении системы уравнений следует проверить, чтобы определитель левой части D ≠ 0, иначе система не будет иметь решения. Для удобства нахождения значений ν1 и ν2 (при заданных ν3 и ν4), систему (11) приводят к единичному базису (метод Жордано-Гаусса) так, чтобы каждое уравнение слева имело одно неизвестное. Так, сложив уравнения в системе (11), получим ν2 = ν3 + ν4 и система (11) примет вид (12)
(12)Задавая ν3 = 1 и ν4 = 0, получим ν1 = 1 и ν2 = 1, т.е.
для первого маршрута. При ν3 = 0 и ν4 = 1 ν1 = 0 и ν2 = 1 и для второго маршрута. При ν3 = 0 и ν4 = 0 все решения будут нулевыми.Пример 2. Рассмотрим пример нелинейного механизма.
(13)Здесь одно линейно-независимое промежуточное соединение Х (NI = 1), 2 стадии (S = 2) и один маршрут Р = 2 – 1 = 1. Матрицу стехиометрических коэффициентов интермедиатов ВХ запишем вектором-строкой
. Поскольку , умножим вектор-строку на вектор столбец . Получим одно уравнениеν1 – 2ν2 = 0, (14)
которое имеет одно линейно-независимое решение. Задав ν1 = 1, получим ν2 = 0.5. При ν1 = 2 ν2 = 1 и т.д. Если при сложении стадий (1) и (2) (для исключения Х из итогового уравнения) умножим стадии (1) и (2) на наборы
|1 0.5| или |2 1|, получим итоговые уравнения, соответственно, маршрутов N(1) и N(2):N(1) А = 1/2 Р
N(2) 2А = Р
Очевидно, что ΔG(Р) (по маршруту N(Р)) определяется уравнением (15)
(15)В соответствии с уравнением (7) для ΔG(Р) и для ΔGj получаем:
(16)где
–скорости элементарной стадии в прямом и обратном направлениях.Для маршрута N(1):
(17)Для маршрута N(2):
(18)Примем стадию (1) механизма (13) в качестве лимитирующей, а стадию (2) – квазиравновесной (
). Тогда при равновесии брутто-процесса ( ) получим из уравнения (17) константу равновесия итогового уравнения для маршрута N(1) ,а из уравнения (18) – константу равновесия маршрута N(2)
.Такие уравнения для К(1) и К(2) получим и в случае лимитирующей второй стадии.