Смекни!
smekni.com

Формально–кинетический анализ гипотез (стр. 2 из 3)

Если кинетические уравнения получены экспериментально, итоговые уравнения выбираются уже не произвольно. Так, например, для механизма (13), если R+ µ [A] (стадия (1) лимитирующая), итоговое уравнение, которое получится при равновесии, будет уравнением N(1). Если R+ µ [A]2, итоговое уравнение N(2). Поэтому для определения скорости R- по известной R+ (и наоборот) следует использовать соответствующие кинетике итоговые уравнения. Таким образом, кинетика реакции в случае нелинейного механизма может ограничивать выбор маршрута.

Для обратимых стационарных и квазистационарных процессов с линейными механизмами нет ограничений при выборе базиса маршрутов и итоговых уравнений.. Однако итоговое уравнение, как мы видели в случае 2А = 2В, не должно противоречить кинетическому уравнению, следующему из механизма реакции. Для механизмов с необратимыми стадиями формально также можно использовать любые наборы

, включая и отрицательные νj для необратимых стадий. Вместе с тем, в согласии с физическим смыслом целесообразно выбирать такие базисы маршрутов, чтобы и маршрут и скорость по маршруту относились к термодинамически и кинетически разрешенному направлению реакции (направление необратимых стадий).

Для нелинейных одномаршрутных механизмов, имеющих лимитирующую стадию, можно получить выражения для скорости лимитирующей стадии в прямом и обратном направлениях, но в этом случае выбор итогового уравнения будет определяться природой лимитирующей стадии.

Получив матрицу Г, найдём итоговое уравнение, т.е. матрицу стехиометрических коэффициентов итоговых уравнений ВР,

или

и уравнения, связывающие скорости по веществу RN и скорости по маршруту RP

.

Поскольку

, получим
или
. Домножив обе части полученного матричного уравнения слева на ВN, получим уравнение (19)

ГRP = Wj, (19)

называемое условием стационарности стадий Хориути - Тёмкина. Это уравнение устанавливает связь между скоростью стадии и скоростью по маршруту и показывает, как стадии механизма перераспределяются по маршрутам. Кроме того, уравнение (19) можно использовать и для вывода уравнений для скоростей Ri и RP (аналогично методу Боденштейна), поскольку система (19) содержит S уравнений и S неизвестных (S = NI + P). Условие стационарности стадий (19) эквивалентно условию Боденштейна

. (20)

Из (20) и (19) получаем уравнение (9), используемое для нахождения базиса маршрутов

.

Пример 3. Механизм гидрирования этилена (21) на поверхности твердого металлического катализатора опишем последовательностью четырех элементарных стадий:

(21)

NI = rankBX = 2 (есть один закон сохранения,

). Следовательно, P = SNI = 2. Найдем матрицу Г. Для этого запишем систему уравнений
. Возьмем два независимых столбца (Z, ZH2) (см. уравнения (10 – (12))

Задавая n3 и n4, получим два вектора nj для двух маршрутов, т.е. матрицу Г:

Зная Г, найдем BP и итоговые уравнения маршрутов BP = ГTBN.

Итоговые уравнения для обоих маршрутов одинаковы

I) H2 + C2H4 = C2H6

II) H2 + C2H4 = C2H6

В этом случае

Поскольку стадия механизма (4) обратима, можно взять другую комбинацию маршрутов:

Получим другую матрицу BP:

и новые итоговые уравнения:

I) H2 + C2H4 = C2H6

II*) 0 = 0

Второй маршрут (II*) называют пустым маршрутом. Скорость реакции по пустому маршруту не равна нулю. Это скорость перехода интермедиатов:

по циклической последовательности стадий. Скорости

,
,
по пустому маршруту равны нулям.
,
,
.

Ранг матрицы BP, т.е. базис QP итоговых уравнений, для маршрутов I и II равен 1 (QP = rankBP = 1). Во втором случае (I и II*) число ненулевых итоговых уравнений равно QP. Такой базис маршрутов называется “стехиометрическим базисом” маршрутов (число пустых маршрутов равно PQP).

На данном множестве реагентов и продуктов мы имеем максимальный базис итоговых (брутто) реакций по стехиометрическому правилу Гиббса

, (22)

где N – общее число участников, Н – атомная матрица. Сравнение Qmax с базисом итоговых уравнений маршрутов QP дает неравенство:

QmaxQP, (23)

при этом, QPP, QmaxP.

В рассмотренном выше примере №1 Qmax = 1, QP = 1, Р = 2.

Пример 4. Рассмотрим более сложный случай пятистадийного цепного процесса пиролиза этана.

(1)

(2)

(3)

(4)

(5)

rankBX = 3 P = SNI = 5 – 3 = 2

Произведение

дает три уравнения:

Возьмем n4 и n5 в качестве независимых переменных и преобразуем систему уравнений:

Определитель левой части D ¹ 0. Задавая n4 = 1, n5 = 0 и n4 = 0, n5 = 1, получаем матрицу Г для Р = 2 и матрицу BP:

I) C2H6 = C2H4 + H2QP = rankBP = 2

II) 2C2H6 = C2H4 + 2CH4Qmax = 2

Приближения квазистационарности и квазиравновесия

При выводе кинетических уравнений часто используют различные допущения о соотношениях скоростей стадий, поскольку скорости элементарных стадий могут сильно различаться по величине. Например, скорости стадий адсорбции и химических превращений на поверхности катализатора. Важное допущение – о наличии медленных и быстрых стадий. Быстрые обратимые стадии являются квазиравновесными (РЕ – preequilibrium), а допущение о наличии таких стадий – приближением квазиравновесия. В закрытых системах особенно для каталитических реакций используют допущение о квазистационарности концентраций интермедиатов (SS – steady - state, допущение Боденштейна). Критерии применимости этих допущений рассмотрены в учебном пособии О.Н. Тёмкина, К.Ю. Одинцова и Л.Г. Брука “Приближения квазистационарности и квазиравновесия в химической кинетике”, М., МИТХТ, 2001г. Здесь приведем условия реализации различных приближений для простой схемы: