Смекни!
smekni.com

Физико-химические основы технологии поликонденсационного наполнения базальто-, стекло- и углепластиков (стр. 2 из 3)

Данные по адсорбции фенола из его разбавленных растворов хорошо согласуются с данными по смачиванию УН, СН и БН смесью мономеров из фенола и формальдегида методом капиллярного поднятия. Для кинетических кривых смачивания характерна высокая скорость поднятия в первые 10-90 секунд от начала эксперимента, с последующим замедлением смачивания до установления равновесия. Отмеченные значения показателей для СН и БН свидетельствуют о близости значений поверхностной энергии этих нитей.

Способность ФФО к формированию сетчатых структур в системе с БН начинает проявляться уже на ранних стадиях реакции – степень отверждения через 35 мин составляет 60 масс.%, в то время как система с СН за этот временной период отверждается лишь на 38 масс.%, и только через 120 мин процесс синтеза для обеих систем выравнивается, достигая степени отверждения 95-96 масс.%. Этими исследованиями установлено, что способность к формированию сетчатых структур композитов на основе БН и УН близка. Видимо, кластерная (негладкая) структура поверхности БН увеличивает их удельную поверхность и ее сорбционную емкость, определяя способность формировать сетчатые структуры.

Изучение оптической микроскопии структуры поверхности образцов УП, БП и СП показало, что они отличаются различной шероховатостью, бугристостью и неровностями рельефа. Возникновение неровностей обусловливается как термическими, так и механическими воздействиями при формовании, а также, в первую очередь, структурной неоднородностью и микрогетерогенностью, связанной с разным сложным многокомпонентным составом БН и СН.

Исследование срезов образцов полученных материалов проводили с помощью растрового электронного (РЭМ) (Hitachi-HU12A) и сканирующего туннельного (СТМ) микроскопов. Из представленных РЭМ изображений среза УП (рис.1,а) заметно равномерное распределение полимерной пленки по поверхности УН и имеет место относительно равномерное распределение нитей в сечении образца материала. На изображении СТМ произвольного участка УП видно, что поверхность УН имеет характерные наноразмерные продольные однонаправленные неровности. Из приведенного РЭМ изображения срезов образца СП заметна большая толщина полимерной пленки на поверхности СН (рис.1,б) с характерными бугристыми заполнениями неровностей в рельефе поверхности нитей в отличие от УП. Учитывая, что пористость СН на порядок меньше пористости УН, большая часть полимера формируется на поверхности нитей и представляет собой объемный слой полимерной матрицы между нитями. Из изображения РЭМ поперечного срезов БП отмечено практическое отсутствие раздавленных нитей, а сформированная на поверхности нитей тонкая полимерная пленка (рис.1,в) имеет четко выраженную ориентацию по ее рельефу.

Таким образом, в отличие от углепластика на стеклонитях и базальтовых нитях формируется более толстая полимерная пленка с бугристыми заполнениями шероховатостей в рельефе поверхности нити и четко выраженной ориентацией по их рельефу.

Глава 4. Структура и свойства ПКМ на основе БН, СН и УН, полученных по интеркаляционной технологии

Анализ полученных экспериментальных данных (табл.2) свидетельствует о том, что физико-химические и механические свойства ПКМ, полученных по ИТ, значительно превышают аналогичные свойства ПКМ, сформованных по традиционной технологии пропиткой нитей ФФС. В целом БП поликонденсационного способа наполнения по всем изучаемым характеристикам превосходят СП. Важным показателем таких материалов является высокая устойчивость к горению: кислородный индекс для БП составляет 60%, СП-50%, УП-70%. При поджигании на воздухе образцы не поддерживают горения. Такие материалы относятся к трудногорючим. Эти свойства привносятся в структуру материала также и фенолформальдегидной матрицей, которая относится к углеродообразующему материалу.

Физико-механические свойства УП, СП и БП, сформированных по ИТ, практически не изменяются после двухчасового кипячения в дистиллированной воде. Это свидетельствует о плотной структуре композитов, сформированных интеркаляцией мономеров в микродефекты и поры нитей, с образованием при последующем отверждении тонких пленок на их поверхности. При этом происходит ориентация по рельефу поверхности пор и нитей.

Результат исследования ПКМ методом рентгеноструктурного анализа (табл.3) показал, что степень кристалличности и размер кристаллитов ПКМ, полученных по ИТ, по сравнению с традиционно наполненными пластиками уменьшается. Это связано с проникновением в микроструктуру нитей мономеров, которые вызывают разупорядочивание макромолекул как в структуре самих нитей, так и в их объеме. Однако относительно небольшое разупорядочивание не оказывает значительного влияния на прочностные характеристики.

Таблица 2

Сравнительные характеристики ПКМ, полученных по ИТ и традиционному способу на УН, СН и БН

Вид наполнителя

Твердость по Бринеллю, МПа

Разрушающее напряжение при сдвиге, МПа

Разрушающее напряжение при изгибе, МПа

Модуль упругости при изгибе, ГПа

Плотность, кг/м3

Водопоглощение при 2х часовом кипячении, %

БН 420/376 26/22 635/520 45/37 2030 1710 0,21/0,33
СН 400/355 28/24 400/206 28/15 1900 1650 0,28/0,38
УН 632/596 23/14 840/600 56/42 1600 1350 0,39/0,55

Примечание: В числителе значения по ИТ, в знаменателе – при традиционной пропитке нитей готовой смолой.

Таблица 3

Данные рентгеноструктурного анализа

ПКМ Степень кристалличности, % Размер кристаллитов, нм
Базальтопластик 40 / 42 17,84 / 25,04
Стеклопластик 34 / 47 12,25 / 29,25
Углепластик 77,5 / 82 9,63 / 9,97

Примечание: В числителе значения по ИТ, в знаменателе – при традиционной пропитке нитей готовой смолой.

Подтверждением более плотной и более сшитой структуры БП, СП и УП являются данные по термостабильности образцов, изученных термогравиметрическим анализом. По увеличению коксового остатка, снижению скорости термолиза, существенно меньшей потере массы (более чем в 2 раза) вплоть до 6000С/г, значительному возрастанию энергии активации можно утверждать о более полном химическом и физическом взаимодействии функциональных групп ФФО с БН по сравнению с СН. Деструкция образцов, полученных по ИТ, смещается в область более высоких температур по сравнению с традиционно наполненными ПКМ. По возрастанию величины энергии активации изучаемые материалы образуют ряд УП>БП>СП, причем одинаково как для интеркаляционного, так и для традиционного метода формирования изучаемых ПКМ.

Учитывая, что БП и СП представляют собой интерес, для расширения области их применения (в том числе в области повышенных температур) проводили изучение токсичности выделяемых газообразных веществ на хроматографе "Кристалл" (Россия). Полученные результаты при 200С свидетельствуют, что в образцах БП и УП свободный фенол отсутствует. Обнаружено содержание фенола в СП (табл.4); однако эти значения ниже ПДК фенола (0,005мг/м3).

Таблица 4

Показатели газовой хроматографии на хроматографе "Кристалл" при 200С

ПКМ Время выхода, мин Площадь пика, мВ·с

Высота пика, мВ

Концентрация фенола, мг/м3
СП трад. 3,4 14,663 0,96321 0,00050655
СП поликонд. 3,4 6,8535 0,26703 0,00032086

Дополнительно токсичность газов, выделяемых при высоких температурах, анализировали на хроматографе НР 5890 (США). Для этого все образцы подвергались термической обработке в муфельной печи при 5500С. Выделяющиеся газообразные соединения сорбировались и направлялись в капиллярную колонку хроматографа, где происходила их десорбция. Разделение микропримесей проводили в интервале от 50 до 2800С. Были получены хроматограммы для БП, СП и УП, сформированных по ИТ и традиционной технологии, анализ которых в области времени выхода 1-19 минут показал, что выделение свободного фенола для всех образцов происходило в течение первых 5-6 минут при нагреве термостата колонки до1200С.

Потери массы образцов после термической обработки в муфельной печи хроматографа при Т=5500С больше для ПКМ, полученных по традиционной технологии по сравнению с ИТ (табл.5), что подтверждает химическое взаимодействие функциональных групп в системе нить-ФФО, с образованием плотной структуры ПКМ, сформированных по ИТ.

По результатам исследования обнаружено, что содержание свободного фенола в образцах, сформированных по ИТ ~ в 2 раза меньше, чем в традиционно наполненных ПКМ, что объясняется более полным превращением фенола в процессе поликонденсации в трехмерную структуру в объеме образцов. Кроме того, в образцах обнаружены о-, п- замещенные фенола. Эти данные представляют интерес для расширения области возможного применения БП, СП и УП, полученных по ИТ.