Смекни!
smekni.com

Физико-химические основы адсорбционной очистки воды от органических веществ (стр. 1 из 12)

Государственное образовательное учреждение высшего профессионального образования

«Московский Государственный Технический Университет

имени Н.Э. Баумана»

Калужский филиал

Кафедра Промышленной экологии

Курсовая работа по курсу «Химия окружающей среды»

на тему «Физико-химические основы адсорбционной очистки воды от органических веществ»

Калуга, 2008


СОДЕРЖАНИЕ

1. Введение

2. Адсорбционные методы

3. Сорбция из водных растворов

4. Изотермы адсорбции. Уравнение Лэнгмюра. Уравнение Фрейндлиха......

5. Расчет изотермы адсорбции молекулярно-растворенных органических веществ на активных углях без экспериментальных измерений

5.1 Аддитивность величин стандартного уменьшения свободной энергии адсорбции

5.2 Парциальная константа адсорбционного равновесия при адсорбции из водных растворов на пористых углеродных сорбентах

5.3 Коэффициент активности. Предельное значение коэффициента активности

5.4 Вычисление изотерм адсорбции органических веществ из водных растворов углеродными адсорбентами

6. Методы выбора и контроля адсорбентов для очистки воды

6.1. Влияние природы поверхности и пористости углеродных адсорбентов на молекулярную адсорбцию органических веществ из водных растворов

6.2. Влияние ионизации и ассоциации молекул в растворе на их адсорбцию

7. Кинетика и динамика сорбции из водных растворов

8. Активные угли и их регенерация

9. Использование дешевых сорбентов и отходов

Заключение

Практическая часть

Список используемой литературы


1. ВВЕДЕНИЕ

Объем потребляемой в мире воды достигает 4 трлн. м3 в год, а
преобразованию со стороны человека подвергается практически вся гидросфера. Химическая и нефтехимическая отрасли промышленности способствуют проникновению в водную среду веществ, обычно отсутствующих в ней, или превышению естественного уровня их концентрации, ухудшающей качество водной среды. [9]

За время существования человечества в природную среду было введено огромное количество органических веществ. Вредные химические элементы и вещества попадают в водоемы, ухудшая их санитарное состояние и вызывая необходимость специальной глубокой очистки воды перед использованием ее для хозяйственно-питьевых и некоторых промышленных целей. Многие органические примеси не извлекаются из воды механически, не нейтрализуются при биологической очистке, не удаляются такими традиционными методами водоочистки, как отстаивание, коагуляция и флотация. Это обуславливает введение в комплексную технологическую схему водоподготовки стадии адсорбционной доочистки. Как правило, эта стадия является заключительным этапом в технологическом процессе очистки воды. Адсорбционный метод является хорошо управляемым процессом. Он позволяет удалять загрязнения различного характера практически до любой остаточной концентрации независимо от их химической устойчивости. При этом отсутствуют вторичные загрязнения. Отсюда перспективной является тенденция развития фильтрующе-сорбирующих устройств, предназначенных для локальной доочистки питьевой воды, и этот вопрос является весьма актуальным.


2. АДСОРБЦИОННЫЕ МЕТОДЫ

Адсорбция – процесс концентрирования растворенного вещества (адсорбата) или растворителя (адсорбтива) из объема фаз на поверхности раздела между ними (на поверхности твердого тела (адсорбента) или жидкости). [3]

В зависимости от характера сорбционного взаимодействия адсорбата и адсорбента различают физическую адсорбцию, активированную адсорбцию и хемосорбцию.

Физическая адсорбция обусловлена силами межмолекулярного взаимодействия Ван-дер-Ваальса, не избирательна, полностью необратима, протекает с высокой скоростью и имеет сравнительно низкую теплоту адсорбции – от нескольких килоджоулей до нескольких десятков килоджоулей на моль адсорбата. Адсорбция протекает молекулярно, т.е. преимущественно адсорбируются соединения в недиссоциированном состоянии. Физическая адсорбция характерна для веществ, адсорбируемых из парогазовой фазы, а при адсорбции из растворов осложнена физико-химическим взаимодействием адсорбата, адсорбтива и адсорбента.

Активированная адсорбция обусловлена взаимодействием адсорбата и адсорбента с образованием поверхностного соединения особого рода, характерного тем, что молекулы адсорбента, вступившие во взаимодействие с молекулами адсорбата (адсорбтива), остаются в кристаллической решетке адсорбента. Активированная адсорбция избирательна, как правило, протекает медленно (с повышение температуры скорость адсорбции заметно возрастает), необратима и характеризуется высокой теплотой адсорбции – до нескольких сотен килоджоулей на моль адсорбата.

Хемосорбция – обычная химическая реакция, протекающая на поверхности адсорбента и сопровождающаяся выделением теплоты, эквивалентной теплоте химической реакции.

Использование комбинации нескольких адсорбентов разного типа позволяет осуществлять комплексную корректировку состава воды по всем необходимым в каждом конкретном случае показателям. Использование смесей адсорбентов определенного состава для подготовки питьевой воды не только высокоэффективно, но и чрезвычайно экономически выгодно. [4]


3. Сорбция из водных растворов

Материал, на поверхности пор которого происходит концентрирование поглощаемого вещества, называют адсорбентом, а само вещество — адсорбатом. Адсорбционные явления основаны на физическом и химическом взаимодействии адсорбата и адсорбента.

Силы молекулярного взаимодействия, в основном, дисперсионные, обуславливающие физическую адсорбцию, возникают при сближении молекул материала адсорбента и адсорбируемого вещества и проявляются в упорядочении движения частиц вследствие взаимного притяжения. Дисперсионные взаимодействия неспецифичны, присущи всем веществам и различаются в конкретных случаях лишь количественно. Потенциальная энергия взаимодействия двух атомов равна

(1)

где r — расстояние между центрами атомов; bэмпирическая константа; Сn — константа поляризации.

Приведенное выражение показывает, что адсорбционные взаимодействия проявляются только на очень малых расстояниях. Теоретически, если взаимное притяжение атомов максимально на расстоянии r0, то при

их взаимодействие ослабевает в 4 — 5 раз. И, наоборот, при
превалируют силы отталкивания. Иногда дисперсионные взаимодействия усиливаются водородными связями и электростатическими (индукционными или ориентационными) силами. Эти дополнительные взаимодействия специфичны для определенного вида адсорбируемых веществ или свойств поверхности адсорбента. Адсорбция – процесс самопроизвольный, протекающий с выделением некоторого количества теплоты,

В отличие от физической адсорбции, носящей обратимый характер с сохранением индивидуальности адсорбата и адсорбента, хемосорбция — скорее химический процесс на границе раздела фаз. Этот процесс обычно необратимый и значительно более экзотермичный, чем физическая сорбция.

Сорбция из жидких растворов значительно сложнее, чем из парогазовой смеси, так как включает взаимодействия сорбента с сорбируемым веществом и с растворителем (водой); при этом также следует учитывать взаимодействие растворителя с сорбатом. Поэтому, несмотря на то, что сорбция из водных растворов исследуется и используется почти 200 лет, она изучена значительно менее сорбции из парогазовой фазы. В основном механизм сорбции из растворов в том или ином виде объясняют представлениями, выведенными для газовой фазы, лишь дополняя или ограничивая условиями, специфическими для жидкой фазы. Отличия в подходе к подобному переносу отражаются на виде и точности моделей и расчетов систем сорбционной очистки воды.

Теория полимолекулярной сорбции, в основе которой лежит представление о многослойной сорбции на поверхности макро- и мезопористого сорбента, была разработана Брунауэром, Эметом и Теллером. Однако в практике наибольшее распространение получили микропористые сорбенты, в чрезвычайно малом пространстве микропор которых послойной сорбции вещества на поверхности не происходит. При сорбции в микропорах происходит заполнение части или всего объема их сорбатом, который под действием взаимно усиливающихся и перекрывающихся адсорбционных полей, создаваемых противоположными стенками пор, находится в специфическом уплотненном состоянии. Теории объемного заполнения микропор, разработанная Дубининым и его школой, использует понятие о предельном объеме адсорбционного пространства микропористого сорбента W0. Основное уравнение адсорбции паров и газов на микропористых сорбентах, известное как уравнение Дубинина – Радушкевича, имеет вид:


(2)

При сорбции вещества из раствора оно занимает на поверхности или в объеме пор сорбента место, которое до этого занимали молекулы растворителя (воды), а не свободное пространство. Присутствие воды в порах приводит к некоторому выравниванию сорбционного потенциала. В объеме сорбируемой фазы концентрация вещества значительно выше, чем в растворе. При этом снижается поверхностное натяжение на границе раздела раствор – твердый сорбент.

Основы термодинамики адсорбции из растворов впервые сформулировал Гиббс более 100 лет назад. Им было введено понятия избыточной адсорбции

, т.е. избыточного содержания поглощаемого вещества в адсорбированной фазе по сравнению с его содержанием в растворе. Величина избыточной (гиббсовской) адсорбции легко определима по формуле