В клетке активность многих ферментов регулируется. Одним из наиболее распространенных механизмов регуляции активности ферментов является аллостерическая регуляция. У ферментов, регулируемых таким способом, кроме активного центра имеется еще один очень важный участок – аллостерический центр. Он обратимо связывает специальные регуляторы, обычно это небольшие молекулы массой менее 1 килодальтона. После связывания регулятора конформация всей белковой глобулы изменяется, и фермент изменяет эффективность своей работы.
Одни аллостерические регуляторы ингибируют активность фермента, тогда как другие активируют ее. Некоторые ферменты имеют несколько аллостерических центров.
Аллостерическая регуляция часто используется в обмене веществ для ингибирования конечным продуктом. Представьте себе, что в организме синтезируется некоторое вещество Z, концентрацию которого необходимо поддерживать на постоянном уровне. Это вещество синтезируется из предшественника А в несколько стадий:
A → B → C → D → Z.
Первый фермент этого пути, превращающий A → B, аллостерически ингибируется конечным продуктом Z. Если концентрация Z повысится выше нормы, то активность первого фермента в цепи реакций окажется угнетенной, выработка продукта сократится, и его концентрация вскоре снизится до нормы. Если же концентрация Z сильно понизится, то аллостерическое ингибирование фермента исчезнет, он заработает в полную силу, и вскоре концентрация продукта восстановится до нормального уровня.
Другой способ регуляции – кооперативность – похожа по механизму на аллостерию. Разберем явление кооперативности на примере гемоглобина – хотя этот кислород-связывающий белок и не является ферментом, принципы остаются теми же. График зависимости насыщения гемоглобина от парциального давления кислорода имеет S-образную форму и сильно отличается от кривой Михаелиса. При низкой концентрации кислорода график насыщения гемоглобина идет очень полого. При увеличении концентрации он круто взмывает вверх: белок, связывающий кислород в соответствии с уравнением Михаелиса, не смог бы обеспечить такую крутизну. Наконец, последний участок этой кривой асимптотически приближается к полному насыщению.
Такое необычное поведение объясняется просто. Гемоглобин состоит из четырех субъединиц, каждая из которых способна связывать молекулу О2. При очень низкой концентрации кислорода все субъединицы гемоглобина находятся в свободном состоянии. Если концентрацию О2 немного повысить, то сперва его связывание пойдет с большим трудом. Однако когда первая субъединица все-таки свяжет кислород, то ее конформация изменится, и это изменение передастся на соседние субъединицы. Они будут связывать кислород легче, чем первая, и кривая связывания стремительно пойдет вверх. Такое повышение сродства к субстрату у других субъединиц после связывания его первой субъединицей называется положительной кооперативностью. Механизм этого явления состоит в том, что изменение конформации одной субъединицы белка вызывает изменение пространственной структуры всей белковой молекулы.
Физиологическое значение этого свойства гемоглобина огромно. Парциальное давление кислорода в крови, выходящей из легких, составляет около 100 мм рт. ст., в этих условиях гемоглобин насыщен на 98%. В тканевой жидкости, омывающей капилляры, парциальное давление О2 может понизиться до 20 мм рт. ст., в этих условиях гемоглобин будет насыщен кислородом на 32%. В итоге 66% (98% – 32%) от общего количества гемоглобина участвует в переносе кислорода. Если бы перенос кислорода осуществлял некий воображаемый белок, не обладающий кооперативностью, то при изменении парциального давления со 100 мм рт. ст.д.о 20 мм рт. ст. он изменил бы свою насыщенность кислородом только на 38%. Таким образом, кооперативность повышает эффективность работы гемоглобина примерно в 1,7 раза.
Еще одним важнейшим механизмом регуляции активности белков является ковалентная модификация. Белки могут подвергаться различным химическим изменениям. Очень распространен ограниченный протеолиз белковых молекул. Многие пищеварительные ферменты синтезируются в форме длинных предшественников. Так, поджелудочная железа секретирует в просвет двенадцатиперстной кишки не активные ферменты трипсин и химотрипсин, а их предшественники – трипсиноген и химотрипсиноген. Трипсиноген длиннее трипсина на 6 аминокислотных остатков с N-конца. Фермент кишечника энтеропептидаза отщепляет этот лишний пептид и превращает неактивный трипсиноген в активный трипсин.
Многие белковые гормоны также синтезируются в виде более длинных предшественников. Так, на рибосомах поджелудочной железы синтезируется предшественник гормона инсулина – проинсулин. Отщепление лишних аминокислот и образование зрелого инсулина происходит в секреторных пузырьках клеток поджелудочной железы.
Ограниченный протеолиз играет важную роль в регуляции свертывания крови. Для образования кровяного сгустка необходимо, чтобы растворимый белок фибриноген превратился в нерастворимый фибрин. Этот процесс становится возможным после ограниченного протеолиза фибрина специальным ферментом – тромбином. Сам тромбин тоже образуется из неактивного предшественника – протромбина – с помощью ограниченного протеолиза. Активация свертывания крови – очень сложный процесс, включающий в себя целый каскад последовательно действующих протеаз.
Запуск самой первой протеазы происходит при повреждении стенки кровеносного сосуда. Существует два механизма активации этого каскада реакций. При внутреннем механизме одна из неактивных протеаз вступает в контакт с белком соединительной ткани коллагеном (что возможно лишь при повреждении стенки сосуда), ее конформация меняется, она переходит в активную форму и запускает весь последующий каскад реакций. При внешнем механизме другая неактивная протеаза соединяется с одним из белков, освобождающимся из поврежденных клеток стенки кровеносного сосуда, и также переходит в активную форму.
Другим распространенным видом ковалентной модификации является фосфорилирование белков – присоединение остатка фосфорной кислоты из молекулы АТФ к одному из аминокислотных остатков белковой глобулы. Целый ряд гормонов оказывают свое физиологическое действие через фосфорилирование соответствующих белков. Рассмотрим действие двух из них – адреналина и глюкагона. Оба гормона вызывают повышение концентрации глюкозы в крови. Эффективность их действия поразительна: одна молекула гормона вызывает выброс в кровь до 100 миллионов молекул глюкозы.
Глюкоза запасается в клетках человека в виде полимера – гликогена (см. урок 3). Фермент гликогенфосфорилиза катализирует распад гликогена до глюкозо-6-фосфата, который затем превращается в глюкозу, а свободная глюкоза поступает в кровь. Самой медленной реакцией является первая, гликогенфосфорилазная, она и ограничивает скорость всего процесса. В спокойном состоянии потребность организма в глюкозе значительно меньше, чем при стрессе или интенсивной мышечной нагрузке, поэтому в норме фермент гликогенфосфорилаза малоактивен, а под действием адреналина и глюкагона резко активируется.
На поверхности мембраны клеток печени, которые запасают гликоген, есть белки-рецепторы, способные связывать гормон. Каждому гормону соответствуют свои рецепторы. Связывание гормона с рецептором происходит за счет нековалентных взаимодействий (электростатических, водородных, гидрофобных). Как только адреналин свяжется с рецептором, конформация рецептора изменится, и он делается способным активировать особый мембранный фермент – аденилатциклазу. Рецептор, не связанный с гормоном, не может активировать этот фермент (на самом деле активация аденилатциклазы протекает гораздо сложнее, чем описано здесь).
Фермент аденилатциклаза катализирует реакцию превращения АТФ в циклический аденозинмонофосфат (цАМФ) – важнейший внутриклеточный регулятор многих биохимических процессов. цАМФ путем диффузии идет в цитоплазму и аллостерически активирует специальный фермент протеинкиназу. Протеинкиназами называют ферменты, которые переносят остаток фосфата от АТФ на белок-мишень: Б–ОН + АТФ → Б–ОРО3Н– + АДФ, где Б – белок-мишень. В клетке имеется множество различных протеинкиназ, каждая из них специфически фосфорилирует только свои белки-субстраты и не действует на другие. Некоторые протеникиназы присоединяют фосфат к остаткам серина и треонина, другие же к остаткам тирозина. цАМФ активирует одну-единственную из них, которая так и называется: цАМФ-зависимая протеинкиназа; она фосфорилирует свои мишени по остаткам серина и треонина.
Среди белков-мишеней цАМФ-зависимой протеинкиназы есть особый фермент – киназа фосфорилазы. В нефосфорилированном состоянии она неактивна, а в фосфорилированном – активна. Киназа фосфорилазы, как явствует из названия, сама фосфорилирует белок-мишень. Этой мишенью является фермент гликогенфосфорилаза. После фосфорилирования гликогенфосфорилаза переходит из малоактивной в высокоактивную форму, и расщепляет гликоген.
Рис.6. Каскад ферментов, активирующийся адреналином и приводящий к освобождению глюкозы. Красным цветом обозначены неактивные формы ферментов, желтым – активные. Голубыми стрелками обозначена активация ферментов путем фосфорилирования
Большое усиление слабого гормонального сигнала достигается за счет многоступенчатости процесса, причем на каждой следующей стадии в работу каскада вовлекается все большее и большее количество белка.