Осветленную дистиллерную жидкость выпаривают обычно в многокорпусных выпарных аппаратах. По достижении концентрации ~40% СаСІ2 выделяется в осадок почти вся содержащаяся в жидкости поваренная соль. Она может быть возвращена в производство соды при условии тщательной отмывки от СаС12 (во избежание увеличения расхода соды на стадии предварительной очистки рассола NaCl). Отфугованная от маточного раствора, промытая и высушенная поваренная соль очень чиста и пригодна для пищевых целей (если дистиллерная жидкость предварительно не обрабатывалась хлоридом бария). Попутное получение чистой пищевой поваренной соли является важным условием рентабельности производства хлорида кальция.
Концентрированный раствор СаСІ2 после отделения поваренной соли продолжают выпаривать до концентрации 67% СаС12 обычно в плавильных аппаратах непрерывного действия до повышения его температуры кипения до 175°С. Затем жидкость разливают в барабаны, где она застывает в плавленый продукт. Для получения чешуйчатого продукта плав выпускают на поверхность охлаждаемого барабана.
Другим вариантом получения твердого хлорида кальция из дистиллерной жидкости является следующий. Осветленную дистиллерную жидкость выпаривают до концентрации 40% СаСІ2, отделяют осадок NaCl, а раствор нейтрализуют соляной кислотой и добавляют к нему хлорную известь для окисления
. После перемешивания добавляют Са(ОН)2 или NaOH, отделяют осадок, а фильтрат упаривают до концентрации 52% СаСІ2. Затем, после охлаждения до 50°С, отстаиванием и фильтрованием удаляют выделившиеся кристаллы NaCl, а раствор высушивают в распылительной сушилке, где получается продукт I сорта.Разработан способ обезвоживания хлорида кальция азеотропной дистилляцией с помощью фракции нефти, кипящей в пределах 160 – 260°С. Нефть после регенерации можно возвращать на дистилляцию – при этом продукт в меньшей мере окрашен в желтый цвет. Обезвоженный хлорид кальция содержит меньше 0,1% воды. На дистилляцию 50%-ного исходного материала подают ~4 кг нефти, а на дистилляцию 75%-ного – 3 кг нефти на 1 кг безводного СаСІ2. При таком способе обезвоживания коррозия аппаратуры и расход тепла меньше, чем при выпарке раствора СаСІ2.
Хлорид кальция может быть получен в результате регенерации аммиака из хлорида аммония мелом сухим способом:
Реакция протекает по схеме:
При 200 – 225°С процесс лимитируется скоростью реакции взаимодействия газообразного хлористого водорода и СаСО3; при 350°С процесс лимитируется диффузией. Опыты в модели шахтной печи показали, что при пропускании возогнанного хлорида аммония через слой кускового мела (3 – 7 мм) при 420 – 450°С получается продукт, содержащий 80 – 85% СаСІ2. Промышленное осуществление этого процесса затруднено сильной коррозией и образованием настылей. Кроме того, при использовании стальной аппаратуры, теряется до 30% аммиака вследствие его каталитического разложения. В керамической и эмалированной аппаратуре потери аммиака невелики.
Получение плавленого хлорида кальция из маточного щелока хлоратного производства, содержащего в 4 – 5 раз больше СаС12, чем дистиллерная жидкость, является значительно более экономичным. Здесь, однако, идет более сильная коррозия вследствие примеси хлората. Процесс осуществляется аналогично получению хлористого магния из хлормагниевых щелоков, т.е. путем выпаривания в чугунных котлах, обогреваемых топочными газами. Иногда выпаривание ведут в стальных котлах, в стенках которых заделаны стальные змеевики; по змеевикам циркулирует перегретая вода или другой теплоноситель. Выпаривание ведут до тех пор, пока температура кипения жидкости не поднимается до 165 – 175°С. При атом концентрация щелока достигает 67 – 75% СаС12, после чего его чешуируют на холодильном барабане или сливают в тару, где он застывает в плав, состоящий из смеси
.Гидрооксихлорид кальция
образуется при смешении в стехиометрическом отношении хлорида кальция, молотой извести и воды. Его можно выделить из дистиллерной жидкости без выпарки ее или на определенной стадии ее выпаривания. Он может быть использован непосредственно, например в строительной технике в качестве добавки, ускоряющей твердение бетона, или переработан на хлорид кальция.Из водного ~10% раствора СаС12 прибавлением сухой гашеной извести можно выделить в виде гидрооксихлорида кальция до ~26% СаС12. При этом образуется хорошо кристаллизующийся осадок. В маточном растворе, количество которого составляет ~80% от исходных количеств раствора СаС12 и Са(ОН)2, содержится 6 – 7% СаС12 и ~0,1% Са(ОН)2. Из дистиллерной жидкости, предварительно выпаренной до содержания 21 – 22% СаС12, при этих же условиях выделяется до 66% СаС12. Для получения кристаллов в хорошо фильтрующейся форме в этом случае необходимо применять вместо сухой гидроокиси кальция известковое молоко. При этом осаждение следует производить, добавляя раствор СаС12 к подогретому до 50 – 60°С известковому молоку при постоянном перемешивании. Затем массу охлаждают до ~1°С для получения максимального выхода гидрооксихлорида. В жидкой фазе, количество которой ~60% от исходной смеси, после кристаллизации гидрооксихлорида остается 7 – 8% СаС12 и ~0,15% Са(ОН)2.
Для получения 30% раствора СаС12 при 55ºС необходимо обработать гидрооксихлорид небольшим количеством воды – 5 – 6% от веса гидрооксихлорида. Однако при этом получается плохо фильтрующаяся масса. Лучшие результаты достигаются при разложении гидрооксихлорида несколько большим количеством воды –приблизительно 14% от его веса. В этом случае в полученном растворе содержится 24 – 25% СаС12.
Изложенное свидетельствует, что переработка гидрооксихлорида кальция, получаемого из дистиллерной жидкости, не может быть экономичной и поэтому она не применяется.
Использование более концентрированных (чем дистйллерная жидкость) растворов СаС12 для получения гидрооксихлорида кальция дает существенные преимущества. Так, если применять раствор с концентрацией 25 – 35% СаС12, то можно получить высокий выход продукта при охлаждении реакционной массы до 20°С (вместо 0°С).
Получение хлорида кальция этим методом заключается в растворении известняка в соляной кислоте, в очистке образующегося «сырого» (неочищенного) раствора СаС12 от примесей и в обезвоживании его. Продукт получается более чистым, чем из отходящих жидкостей содового или хлоратного производства.
Растворение известняка (куски не больше 50 мм) производят в стальных баках, футерованных двумя слоями диабазовой плитки. В нижней части растворителя имеется решетка ив диабазовых плиток, поддерживающая загружаемый известняк. Соляную кислоту, разбавленную до 14% НС1, подают из напорного бака. Образующийся раствор СаС12, вытекающий из растворителя через штуцер в нижней его части по винипластовой трубе, должен содержать не больше 14 г/л свободной кислоты. Этого достигают, поддерживая определенную высоту слоя известняка.
Выделяющиеся из растворителей газы, содержащие СО2 и НС1, протягиваются вентилятором через керамическую башню, заполненную известняком и орошаемую разбавленным раствором хлорида кальция. Вытекающий из башни раствор, содержащий 300 – 350 г/л СаС12, примешивают к основному раствору.
Получающийся сырой раствор, содержащий 450 – 600 г/л СаС12, очищают от примесей соединений Fe, Mg, A1 и
. Очистку производят в стальном, футерованном диабазовой плиткой реакторе с пропеллерной мешалкой (30 об/мин). Вначале раствор очищают от сульфатов. В реактор заливают ~10 м3 сырого раствора и вводят в него в сухом виде при перемешивании ~15 кг хлористого бария. Осаждение сульфата бария заканчивается в течение 20 – 25 мин. Затем раствор подогревают острым паром до 70 – 75°С и добавляют к нему известь-пушонку для осаждения гидроокисей железа, магния и алюминия. После 40 – 50-минутного отстаивания раствор профильтровывают. Количество примесей в нем не должно превышать: 0,003 г/л Fe, 0,03 г/л , 0,025 г/л Mg. Раствор содержит немного Са(ОН)2 (в пересчете на СаО 2,8 – 3,5 г/л). Для получения безводного продукта в распылительной сушилке раствор должен иметь нейтральную или слабощелочную реакцию: при значительной щелочности раствор вспенивается, что затрудняет работу разбрызгивающей форсунки. Нейтрализацию избыточной щелочности осуществляют, добавляя при перемешивании соляную кислоту в сборник очищенного раствора. Затем очищенный раствор проходит через пенный аппарат, где его концентрация повышается до 700 г/л СаС12, и поступает на обезвоживание.