На правах рукописи
АРХИПОВА Наталия Викторовна
САМООРГАНИЗАЦИЯ ИОН-ПРОВОДЯШИХ СТРУКТУР ПРИ ПРОТЕКАНИИ ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССОВ НА ФАЗОВЫХ ПЕРЕХОДАХ, ВКЛЮЧАЮЩИХ СЕРОСОДЕРЖАЩИЕ КОМПОНЕНТЫ
АВТОРЕФЕРАТ
диссертации на соискание ученой степени доктора химических наук
2004
Общая характеристика работы
Актуальность темы диссертации.
Тема диссертационной работы относится к электрохимии твердого состояния, входящей как составная часть в ионику твердого тела (ИТТ) -раздел науки, возникший в конце 1960-х - начале 1970-х годов на границе электрохимии и физики твердого тела. В основе ИТТ лежит открытие, исследование и использование явления быстрого ионного переноса (суперионной проводимости) в твердых телах. Работы по фундаментальным и прикладным проблемам ИТТ интенсивно ведутся в настоящее время во всех промышленно развитых странах.
Указанное фундаментальное явление влечет за собой возникновение ряда проблем как в отношении понимания природы суперионных переходов, механизма быстрого ионного переноса, связи ионной и электронной составляющих проводимости, изменения механических, оптических и других свойств твердых тел, т.е. проблем физики твердого тела, так и в отношении кинетики и механизма процессов, протекающих на фазовых границах, включающих суперионные проводники, что является предметом электрохимии.
Ионика твердого тела является основой для создания принципиально новых приборов и устройств, которые могут быть названы твердотельными ионными преобразователями. К ним относятся, прежде всего, преобразователи энергии - твердотельные химические источники тока, конденсаторы, преобразователи электрических сигналов - функциональные элементы электроники (интеграторы-кулонометры, элементы памяти, элементы задержки, электрические ключи и т.п.), а также преобразователи электрических сигналов в оптические - электрохромные индикаторы и дисплеи, сенсорные системы на суперионных проводниках, на базе которых создаются датчики температуры, давления, ускорения и состава окружающей среды.
Актуальность
ионики твердого тела определяется теми перспективами, которые открывают развитие и реализация твердотельных ионных преобразователей. Их принципиальными преимуществами являются: широкий рабочий диапазон температур (-100 + 100 С и выше), устойчивость к механическим воздействиям - ударам, вибрациям, ускорениям и т.п., возможность миниатюризации, длительные сроки службы и сохранности, возможность функционирования без потребления энергии и, главное, возможность изготовления ионных приборов в едином технологическом цикле современной микроэлектроники.
Место выполнения работы и ее связь с научными программами и темами
Диссертационная работа выполнялась в Саратовском государственном техническом университете в соответствии с научно-техническими программами «Электрохимия и коррозия», входящими в Перечень основных приоритетных направлений развития химической науки и технологии на период до 2000 года № 1022 от 04.01.88, в соответствии с тематикой НИР по направлениям 20.В.03 и 01.В.10, с комплексными программами: г/б тема СГТУ-261 (Конверсия) «Разработка приборов твердотельной ионики на основе суперионного эффекта для использования в приборостроении, медицине, связи», г/б СГТУ-329 (Экология) «Твердый ионный преобразователь информации состава окружающей среды», в соответствии с тематическими планами: г/б тема СГТУ-396 «Исследование гетеропереходов в сенсорных структурах с твердым электролитом», г/б тема СГТУ-122 «Исследование переходных процессов в твердофазных электрохимических системах, включающих серосодержащие композиты, в целях создания многофункциональных преобразователей энергии и информации», на хоздоговорной основе: х/д №886 «Твердотельный ионный преобразователь информации окружающей среды на сероводород» и при финансовой поддержке Российского фонда фундаментальных исследований.
Цель работы – выявление основных закономерностей кинетики и механизма электрохимических процессов, обусловленных образованием ионпроводящих структур на фазовых переходах, включающих серосодержащие компоненты.
Задачи исследования.
Для достижения поставленной цели требовалось:
• провести комплексное, систематическое исследование ионного и электронного транспорта в указанных структурах при варьировании различных факторов, как внешних (поляризация электрода, температура), так и внутренних (состав, толщина, электропроводность переходного слоя интерфазы);
• выявить закономерности изменения количественных параметров ионного и электронного транспорта в зависимости от внешних и внутренних факторов;
• разработать способы определения электрических характеристик изучаемых объектов;
• создать теоретические модели, описывающие процессы переноса заряда в структурах литий/переходный слой интерфазы, сопоставить теоретические выводы с экспериментальными результатами.
Научная новизна проводимых исследований заключалась в изучении процессов, протекающих на границе прямого контакта анода и катода твердофазной системы, с помощью метода твердофазной полярографии. Число работ по механизму и кинетике процессов в твердом теле невелико. Теория электрохимических методов исследования для твердофазных электрохимических систем не разработана.
Новизной обладают следующие положения:
- впервые обнаружено, что при катодном гальваностатическом включении системы прямого контакта Li/Sb2Ss образуется переходный слой интерфазы по механизму быстрого восстановления Sb2Ss до Sb2S3 +, с последующей медленной топохимической реакцией формирования литийтиостибнитной фазы LiSbS2, контролируемой твердофазным диффузионным зародышеобразованием;
- экспериментально полученные вольтамперные характеристики не подчиняются классическим уравнениям электрохимической кинетики. Установлено, что стационарные катодные плотности тока прямого контакта Li/SbiSf возрастают пропорционально квадратам стационарных катодных поляризаций i - Е2. Последнее свидетельствует в пользу выполнимости модели токов, ограниченных пространственным зарядом (ТОПЗ);
- расчет параметров топохимической реакции по хронопотенциограммам гальваностатического включения впервые показал, что средний форм-фактор кинетических кривых Ерофеева-Аврами и=1,0 отвечает «островковому» диффузионно-контролируемому зародышеобразованию LiSbS2 при малости размера зародышей по сравнении? с разделяющим их расстоянием. Среднестатистические значения обратной постоянной времени топокинетической релаксации у=0,075-0,15 и аррениусовской предэкспоненты В не зависят от плотности катодного тока;
- впервые показано, что топоэлектрохимические хронопотенциограммы подчиняются закономерностям смешанной кинетики по модели токов, ограниченных пространственным зарядом (ТОПЗ). Они спрямляются в параболических координатах E-4i. «Переходное» время отвечает излому получаемых прямых, что связано с установлением постоянной толщины слоя интерфазы LiSbS2;
- впервые произведен расчет толщины слоя интерфазы LiSbS2. Максимальная толщина переходного слоя составляет L», =270 нм при
Т=293 К и г'=565 мкА/см2;
- с помощью переменнотоковых измерений впервые определены величины удельных электропроводностей интерфаз, полученных прямым контактом Li/Sb2S5 при различных температурах, которые составляют 10'5- 10"4 О см и рассчитаны коэффициенты ионной диффузии в переходном слое, варьирующиеся в пределах D, = 9,410" 4- 510" см /с при энергии активации AD= 31,8 кДж/моль и возрастающие как с температурой, так и с плотностью катодного тока за счет миграции. По порядку величин параметры диффузии отвечают наиболее подвижным в интерфазе катионам лития;
- впервые рассчитаны аррениусовские температурные зависимости удельных электропроводностей прямых контактов Li/Sb2S;, соответствующие линейным и квадратичным участкам катодных ВАХ. Показано, что появление области пространственного заряда в переходном слое интерфазы LiSbS2 снижает её удельную электропроводность на 1-1,5 порядка. При этом наблюдается двукратное снижение энергии активации электропроводности;
- впервые исследовано электрохимическое поведение границ
Li/LhSz при x=0,013-f0,054; у=0,373-г0,416; г=0,530ч-0,605 и x+y+z=l
С помощью снятия стационарных гальваностатических ВАХ и переменнотоковых измерений. Определены коэффициенты диффузии лития в LixSbySz, равные: DLi- 5,7 104- 6,010"9см2/с. Энергии активации Лс = 34,0-г41,8 кДж возрастают с мольной долей лития х в литиевых тиостибнитах;
- впервые показано тормозящее влияние областей пространственного заряда на катодные и анодные процессы в системах прямого контакта и качественное согласие моделей, используемых для интерпретации экспериментальных данных для границы прямого контакта Li/Sb2Sx и границ прямого контакта Lz;
- впервые получен новые литийпроводящие твердые электролиты путем твердофазного химического синтеза и электрохимического синтеза методом прямого контакта анода и катода, имеющие электропроводность 10"4-М0"3 Ом'см"1 в температурном интервале 283-=-323 К, с числами переноса (0,91-0,95);
- показано, что химически синтезированные литийтиостибнитные фазы LixSbySz значительно более дефектны по сравнению с интерфазой прямого контакта LlSbS2, что приводит к их повышенной удельной электропроводности и ускорению ионного транспорта.
Все вышеизложенное дает основание считать совокупность проведенных исследований существенным вкладом в электрохимию твердофазных систем, заключающимся в установлении закономерностей кинетики и механизма электрохимических процессов в переходных слоях, образующихся на межфазных границах, и разработке на этой основе общего подхода к созданию различных классов твердотельных электрохимических преобразователей энергии и информации.