Очень редки минералы, в состав которых входят карбиды. Как правило, это вещества особенно глубинного происхождения; поэтому ученые предполагают, что в ядре земного шара есть углерод.
Для химической промышленности углерод и его неорганические соединения представляют значительный интерес – чаще как сырье, реже как конструкционные материалы.
Многие аппараты химических производств, например, теплообменники, изготавливают из графита. И это естественно: графит обладает большой термостойкостью и химической стойкостью и при этом прекрасно проводит тепло. Кстати, благодаря этим же свойствам графит стал важным материалом реактивной техники. Из графита сделаны рули, работающие непосредственно в пламени сопловых аппаратов. В воздухе воспламенить графит практически невозможно (даже в чистом кислороде сделать это непросто), а чтобы испарить графит нужна температура, намного более высокая, чем развивающаяся даже в ракетном двигателе. И, кроме того, при нормальном давлении графит, как и гранит, не плавится.
Без графита трудно представить современное электрохимическое производство. Графитовые электроды используются не только электрометаллургами, но и химиками. Достаточно вспомнить, что в электролизерах, применяемых для получения каустической соды и хлора аноды – графитовые.
Об использовании соединений углерода в химической промышленности написаны многие книги. Карбонат кальция, известняк, служит сырьем в производстве извести, цемента, карбида кальция. Другой минерал – доломит – «праотец» большой группы доломитовых огнеупоров. Карбонат и гидрокарбонат натрия – кальцинированная и питьевая сода. Одним из основных потребителей кальцинированной соды была и остается стекольная промышленность, на нужды которой идет примерно треть мирового производства Na2CO3.
И, наконец, немного о карбидах. Обычно, когда говорят карбид, имеют в виду карбид кальция – источник ацетилена, а, следовательно, многочисленных продуктов органического синтеза. Но карбид кальция, хотя и самое известное, но далеко не единственное очень важное и нужное вещество этой группы. Карбид бора В4С – важный материал атомной техники (подробнее об этом см. в статье «Бор».), карбид кремния SiC или карборунд – важнейший абразивный материал. Карбидам многих металлов свойственны высокая химическая стойкость и исключительная твердость; карборунд, к примеру, лишь немного уступает алмазу. Его твердость по шкале Мооса равна 9,5...9,75 (алмаза – 10). Но карборунд дешевле алмаза. Его получают в электрических печах при температуре около 2000°C из смеси кокса и кварцевого песка.
По словам известного советского ученого академика И.Л. Кнунянца, органическую химию можно рассматривать как своеобразный мост, перекинутый наукой от неживой природы к высшей ее форме – жизни. А всего полтора столетия назад лучшие химики того времени сами считали и учили своих последователей, что органическая химия это наука о веществах, образующихся при участии и под руководством некоей странной «материи» – жизненной силы. Но скоро эту силу отправили на свалку естествознания. Синтезы нескольких органических веществ – мочевины, уксусной кислоты, жиров, сахароподобных веществ – сделали ее попросту ненужной.
Появилось классическое определение К. Шорлеммера, не потерявшее смысла и 100 лет спустя: «Органическая химия есть химия углеводородов и их производных, то есть продуктов, образующихся при замене водорода другими атомами или группами атомов».
Итак, органика – это химия даже не одного элемента, а лишь одного класса соединений этого элемента. Зато какого класса! Класса, поделившегося не только на группы и подгруппы – на самостоятельные науки. Из органики вышли, от органики отпочковались биохимия, химия синтетических полимеров, химия биологически активных и лекарственных соединений...
Сейчас известны миллионы органических соединений (соединений углерода!) и около ста тысяч соединений всех остальных элементов, вместе взятых.
Общеизвестно, что на углеродной основе построена жизнь. Но почему же именно углерод – одиннадцатый по распространенности на Земле элемент – взял на себя труднейшую задачу быть основой всего живого?
Ответ на этот вопрос неоднозначен. Во-первых «ни в одном из элементов такой способности к усложнению не развито в такой мере, как в углероде». Во-вторых, углерод способен соединяться с большинством элементов, причем самыми разнообразными способами. В-третьих, связь атомов углерода между собой, так же как и с атомами водорода, кислорода, азота, серы, фосфора и прочих элементов, входящих в состав органических веществ, может разрушаться под воздействием природных факторов. Поэтому углерод непрерывно круговращается в природе: из атмосферы – в растения, из растений – в животные организмы, из живого – в мертвое, из мертвого – в живое...
Четыре валентности атома углерода – как четыре руки. А если соединились два таких атома, то «рук» становится уже шесть. Или – четыре, если на образование пары затрачено по два электрона (двойная связь). Или – всего две, если связь, как в ацетилене, тройная. Но эти связи (их называют ненасыщенными) подобны бомбе в кармане или джину в бутылке. Они скрыты до поры до времени, но в нужный момент вырываются на волю, чтобы взять свое в бурной, азартной игре химических взаимодействий и превращений. Самые разнообразные конструкции образуются в результате этих «игрищ», если в них участвует углерод. В редакции «Детской энциклопедии» подсчитали, что из 20 атомов углерода и 42 атомов водорода можно получить 366319 различных углеводородов, 366319 веществ состава C20H42. А если в «игре» не шесть десятков участников, а несколько тысяч; если среди них представители не двух «команд», а, скажем, восьми!
Где углерод, там многообразие. Где углерод, там сложности. И самые разные по молекулярной архитектуре конструкции. Простенькие цепочки, как в бутане СН3 – CH2 – СН2 – СН3 или полиэтилене – СН2 – СН2 – CH2 – CH2 –, и разветвленные структуры (простейшая из них – изобутан); кольца с чисто углеродным скелетом (циклопропан, циклогексан, бензол) и те же кольца с «подвесками» (толуол, анилин); кольца, в которые вклинились посторонние атомы – гетероциклические соединения, например тиофен C4H4S, и конгломераты всевозможных колец (самый простой – нафталин, состоящий из двух бензольных колец). И все это структуры простейшие – амебы и инфузории органической химии.
Если продолжать аналогию с живой природой, то где-то на уровне мхов и лишайников окажутся почти все известные сейчас синтетические полимеры, например нейлон:
или широко применяемая в технике твердая фенолформальдегидная смола резит:
А на вершине усложнения – самые главные для нас полимеры: нуклеиновые кислоты и белки. Очень сложна и в большинстве случаев еще не расшифрована окончательно их структура. И каждое новое достижение в этой области еще и еще раз напоминает не только о могуществе современной науки, но и о необычайной сложности задач, стоящих перед тем, кто пытается постичь смысл жизни на молекулярном и субмолекулярном уровне. Вспомните хотя бы о двойной спирали молекулы ДНК или лабиринтной запутанности четырех цепей молекулы гемоглобина.
Несколько лет назад произошло событие мировой важности: был осуществлен полный химический синтез молекулы белка инсулина.
Это один из простейших по строению, но очень важный для жизни белок. Он ответствен за углеводный обмен в организме.
В молекуле инсулина две цепи, связанные дисульфидным (из двух атомов серы) мостиком. Одна из цепей состоит из 21 аминокислоты, причем внутри нее есть дисульфидное кольцо. В составе другой цепи – 30 аминокислот, также соединенных в строгой последовательности. Синтез первой цепи состоял из 89 этапов-реакций, второй – из 138. Наконец, последней, 228-й ступенью работы было соединение цепей.
Нужно ли говорить, что эта работа потребовала множества труда и времени. А в живой клетке синтез одной молекулы белка (даже намного более сложной, чем молекула инсулина) занимает всего 2...3 секунды.
Не стоит забывать еще об одной особенности белкового синтеза: сейчас известно более 20 аминокислот – структурных блоков, из которых строится белковая молекула. Общая условная формула всех аминокислот кажется простенькой:
Но под значком R могут скрываться различные группы атомов. Лишь в простейшем случае, в молекуле глицина, R – это атом водорода, а к примеру у гистадина R состоит из 11 атомов:
Очень важен порядок соединения аминокислот в молекуле белка. Установлено, например, что одна из тяжелых болезней крови происходит из-за того, что только в одном месте молекулы гемоглобина одна из аминокислот замещена другой (глутаминовая кислота – валином).
В молекулах белков – многие тысячи атомов. Там обязательно есть водород, кислород, азот; очень часто – сера. Но основа этих молекул – всегда углерод. И без углерода нет жизни, во всяком случае – на Земле.
Есть, правда, организмы, в которых содержание элемента №6 всего 0,1%. В ряске, затягивающей стоячий пруд, 2,5% углерода. Зато в более высокоорганизованном колокольчике его уже 10,2%. В организме мыши на долю углерода приходится 10,77%, а кошки – почти вдвое больше, 20,56%. Не это ли обстоятельство легло в основу общеизвестного явления, заключающегося в том, что кошка ловит мышку, а не наоборот?