Смекни!
smekni.com

Транспортные процессы и гетеропереходы в твердофазных электрохимических системах (стр. 5 из 6)

Гетеропереход с йодным комплексом (фенотиазин-т5) обнаруживает подобие поведения W2 на обратимых гетеропереходах с серебром. Температурная зависимость W2 представляет две прямые, одна низкотемпературная - до 300К

W2 = (6.38 ± 1.31) 10-3Ъехр [(0.118±0.005) еУ/к. Т] Ом. см2/с|/2, вторая высокотемпературная - выше 300К

W2 = (1.90 +42. |,8) 10»7Т. ехр [(0.394 ± 0.088) еУ/кТ] Ом. см2/с1/2. В случае с йодными комплексами диффузия ионов. Rb+ затрудняется. Вычислены энергии активации для диффузии до примесным дефектам 0,24 eV и для диффузии по собственным дефектам 0,40 eV. R3 = (7.36 +1<u_4r3) 10-10T. exp [(0.404 ± 0.022) еУ/кТ] Ом. см2/с»2 близки к значениям, полученным с графитово-йодными электродами.

Методом потенциодинамической вольтамперометрии на системах показаны электронно-дырочные процессы, процессы выделения серебра на йодных электродах.

В седьмой главе приведены результаты использования суперионных проводников при построении сенсора на йод и высокоемкого конденсатора - ионистора.

Сенсор для определения концентрации йода разработан для применения в условиях 100% -ной влажности и высокого радиационного поля.

Сенсор представляет собой электрохимическую цепь вида Ni/Ag,AgJ/AgJ/Au /Си. Рабочий диапазон: концентрация йода в газовой среде 10~7...10~4 М. Рабочая температура от 350 до 390К. Доза облучения до 400 кГр. Зависимость быстродействия представлена в табл.4.

Разработана технология изготовления ионисторов на основе разработанных материалов и проведенных исследований, позволившая получить следующие основные характеристики: емкость до 100 Ф; ток саморазряда при 398К < 10 нА, при 298К < 10 пА; количество циклов заряд-разряд > 150000.

Основные результаты и выводы

Впервые изучена система MJ-AgJ-CH3COCH3, где M=Rb, К. Получены растворимости смеси AgJ и MJ в ацетоне. Найдены условия при которых образуется сольват MAg3J42CH3COCH3, чистая фаза AgtMJj или смесь фаз Ag4MJ5 и M2AgJ3> Разработан метод выращивания монокристаллов AgiMJs из раствора RbJ-AgJ-CH3COCH3. Этим методом впервые получены бесцветные, оптически прозрачные

Монокристаллы Ag^RbJs высокой чистоты объемом до 30 см3. Параметр элементарной ячейки для а-фазы а=11,24А. Рентгеновская плотность для четырех формульных единиц равна 5,38 г/см3, проводимость 0,31 Ом» см» при 298К. Разработан метод выращивания монокристаллов Ag4KJs. Этим методом впервые получены оптически прозрачные монокристаллы объемом до 0,13 см3 и с проводимостью 0,33 Ом'1 см»' при 298К. Из системы AgJ-RbJ-HJ-H20-C3H60 выращены монокристаллы AgJ для оптических исследований.

Исследованы на монокристаллах «фазовые переходы а<->р при 208К и у-» р при 120К. Оптическими и термодинамическими методами показано, что фазовый переход 208К обладает температурным гистерезисом ~1 К, полная энергия и энтропия перехода Р-а равны 565 Дж/моль и 2,93 Дж/моль.К. Сделан вывод, что фазовый переход 208К относится к переходам первого рода. Исследована доменная структура, образующаяся при фазовом переходе а-р. Показано, что в Р - фазе размер доменов определяется температурой и не носит релаксационного характера. Обнаружена субдоменная структура, возникающая в кристаллах, претерпевших большое число фазовых переходов оу. Появление субдоменной структуры сопровождается образованием трещин и разрушением кристалла. Обнаружено, что при фазовом переходе у-р (120К) скрытая теплота выделяется в два этапа с интервалом 0.4К. Полная энергия и энтропия равны 339 Дж/моль и 2,80 Дж/моль. К соответственно. Определена температурная зависимость ширины запрещенной зоны.

Исследованы процессы кинетики основных носителей на монокристаллах. Получены температурные зависимости коэффициента диффузии Ag и проводимости. Энергии активации диффузии 0.093 eV, проводимости 0,106 eV. Найдена корреляция «и определено отношение Хёйвёна (0,48...0,42 для интервала 273...373К). Установлено, что коэффициенты диффузии в моно - и поликристаллических образцах, в пределах погрешности, совпадают.

Показано, что в Ag4RbJs отсутствует влияние межкристаллических границ на перенос ионов Ag+.

Впервые исследован процесс диффузии ионов йода в монокристаллах Ag4RbJ5 с помощью изотопа 13,J. Получена температурная зависимость коэффициента диффузии с энергией активации 0,98eV. Обнаружено влияние йода на монокристаллы A&RbJs и обнаружен эффект их аддитивного окрашивания при нормальных условиях. Установлена корреляция между концентрациями йода в газовой фазе и центров окраски в монокристаллах. Показано, что центрам окраски принадлежит полоса 2,93 eV с полушириной 0,78eV. Установлено, что при концентрации дырок большей, чем 4.10. см, кристалл разрушается. Предложена модель, по которой эффект окрашивания связан с захватом атомами йода, адсорбировавшимися на поверхности, электронов и образованием в валентной зоне кристалла дырок, которые, в свою очередь, образуют центры окраски, диффундирующие. в решетку.

Оптическими методами исследован процесс диффузии центров окраски. Получена температурная зависимость коэффициента диффузии с энергией активации 0,33 eV. Спектроскопическими, люминесцентными и диффузионными методами показано, что при аддитивном окрашивании на поверхности кристаллов образуется слой AgJ, который снижает эффективный поток йода через поверхность.

Сделан вывод, что аддитивное окрашивание кристаллов AgtRbJs при нормальных условиях возможно при высокой подвижности ионов серебра. Обнаружено, что аддитивное окрашивание приводит к изменению электронной составляющей проводимости.

Методами потенциодинамической вольтамперометрии и импеданса изучено электрохимическое поведение йода и его комплексов с фенотиазином на границе с суперионными проводниками. Рассчитаны кинетические параметры. Показано, что гетеропереход описывается, эквивалентной схемой, включающей наряду с емкостью двойного слоя две параллельные релаксационные цепочки. Одна из них связана с ионами рубидия и состоит из адсорбционной емкости (С2) и диффузионного импеданса Варбурга (ZW2), вторая - связанная с центрами окраски, состоит из адсорбционного сопротивления (R3), С3 и ZW3 – Гетеропереходы с поликристаллическим супериоником описываются схемой, в которой вторая цепочка содержит R3 и ZW3.

Исследованы гетеропереходы гpaфит/Ag4Rbт5 и cepe6po/Ag4RbJ5 на монокристаллах. Получены температурные зависимости параметров эквивалентных схем гетеропереходов RF) С, С2, R2, W2. Вычислены энергии активации для RF, и для W2. Обнаружено, что параметры i эквивалентной схемы гетероперехода зависят от ориентации монокристалла, т.е. от плотности упаковки граней. На основании результатов по диффузии ионов иода и определения постоянной Варбурга W2, показано, что не основными носителями в модели АРДС выступают ионы рубидия, влияющие на перераспределение ионных и электронных носителей заряда на границе электрод/электролит. Обнаружена корреляция между термодинамической стабильностью суперионного проводника и энергией активации сопротивления - переноса заряда основных носителей RF и диффузией не основных носителей, определяемых из импедансных измерений.

Определена корреляция между структурными фазовыми переходами, оптическими характеристиками и спектрами проводимости, полученными в субмиллиметровом диапазоне.

Разработан измерительный комплекс с компьютерным управлением для снятия различных вариантов вольтамперометрических зависимостей. Предложен алгоритм моделирования эквивалентных схем, описывающий гетеропереходы и определяющий их числовые значения.

Ю. Созданы макетные образцы сенсора на йод и сверхъемкого конденсатора. Сенсор работоспособен в газовой среде с концентрацией иода 10~...1 о Ми100% -ной влажностью в интервале температур; 320...390К. Доза облучения до 400 кГр. Сверхъемкий конденсатов ионистор с основными характеристиками емкость до 100 Ф; ток саморазряда при 398К < 10 нА, при 298К < 10 пА; количество циклов заряд-разряд > 150000.

Все вышеизложенное позволяет считать совокупность проведенных исследований новым научным направлением, заключающимся в установлении взаимосвязи структурных, оптических и электрохимических характеристик униполярных суперионных монокристаллов класса a-AgJ с проводимостью по ионам серебра, предопределяющей возникновение суперионного состояния твердых тел.

Основное содержание диссертации опубликовано в следующих работах

1. Гоффман В.Г., Тиликс Ю.Е., Скуиня А.А., Дзелме Ю.Р., Луговской В.К., Укше Е.А. Диффузия иода в монокристаллах твердого электролита RbAgJs // Электрохимия. - 1979. - Т.15. №8. - С.1252-1255.

2. Гоффман В.Г., Букун Н.Г., Укше Е.А. Импеданс ячеек с монокристаллическим твердым электролитом RbAgJs // Электрохимия, 1981. r.17. №7. -C.1098-1102.

3. Гоффман В.Г., Укше Е.А. Профили концентрации и коэффициенты диффузии иода в RbAg^s // Электрохимия, - 1981. - Т.17. №3. - С.380-382.

4. Гоффман В.Г., Укше Е.А. Растворение иода в твердом электролите RbAg4J5 // Электрохимия. -1981. -Т.17. №9. -С.1402-1404.

5. Гоффман В.Г., Скуиня А.А., Тиликс Ю.Е., Укше Е.А. Диффузия ионов в твердом электролите RbAg4J57/ Электрохимия. - 1981. - Т.17. №8.

6. С.1261-1263.7. Tiliks J. E., Goffman V. G., Skuinja А.А., Dzelme J. R.,

7. Lugovskoi V. K., Ukshe E. A. The measurement of silver and iodide diffusion coefficients in RbAg4J5 single crystals // Inter conf. Detects ininsulating crystals. Abstr. Of contrib. Papers. Riga, 1981. P.504-505. I 8. Букун Н.Г.,

8. Укше E. A., Гоффман В.Г. Комплексное сопротивление границы графит/твердый электролит RbAg4Js // Электрохимия. - 1982. -Т.18. №5. -С.653-656.9.

9. Букун Н.Г., Гоффман В.Г., Укше Е.А. Импеданс обратимой границы серебро/монокристаллический твердый электролит RbAg4J5 Электрохимия. - 1983. - Т. 19. №6. -С.731-736.Ю. Гоффман В.Г., Андреев В.Н., Шаймерденов Б.У., Укше Е.А.

10. Аддитивное окрашивание иодом твердого электролита RbAgJs // Ионика твердого тела: Материалы докладов ITI научного семинара.

11. Тез. докл. - Свердловск, 1979. - С.29-30.15. Мищенко А.В., Иванов-Шиц А.К., Гоффман В.Г., Боровков B. C.

12. Выращивание и свойства монокристаллов твердого электролита RbAg4J5. I // Электрохимия. - 1975. - Т.11. №2. - С.333-335.16. Мищенко А.В., Гоффман В.Г., Иванов-Шиц А.К., Боровков B. C.