2.3 Принцип действия проектируемой установки
Технологическая схема выпарной установки показана на листе 1 графической части. Исходный разбавленный раствор с концентрацией 4 % масс и температурой 25 0С из промежуточной емкости центробежным насосом подаётся в теплообменник (ГОСТ 15118-79), где подогревается до температуры близкой к температуре кипения, а затем в выпарную установку (ГОСТ 11987-81). Предварительный подогрев раствора производится насыщенным водяным паром.
Выпарной аппарат обогревается свежим водяным паром. Вторичный пар, образующийся при концентрировании раствора, направляется в барометрический конденсатор.
Самопроизвольный перетек раствора и вторичного пара в корпусе возможен благодаря общему перепаду давлений, возникающему в результате создания вакуума конденсацией вторичного пара, а в барометрическом конденсаторе смешения (где заданное давление поддерживается подачей охлаждающей воды и отсосом неконденсирующихся газов вакуум-насосом). Смесь охлаждающей воды и конденсата выводится из конденсатора при помощи барометрической трубы с гидрозатвором. Образующийся концентрированный раствор центробежным насосом подаётся в промежуточную емкость упаренного раствора концентрацией 19 % масс.
Конденсат греющего пара из выпарного аппарата выводится с помощью конденсатоотводчика.
Важное значение имеет охрана окружающей среды. Поэтому необходимо строгое соблюдение технологии очистки сточных вод, отходящих газов и т.д. Целесообразно применение мер профилактики по предотвращению опасных выбросов.
3. РАСЧЕТ ОСНОВНОГО ОБОРУДОВАНИЯ
3.1 Определение поверхности теплопередачи выпарного аппарата
Поверхность теплопередачи выпарной установки определяют по основному уравнению теплопередачи:
F=Q/(K*Δtп). (3.1)
Для определения тепловой нагрузки Q, коэффициента теплопередачи К и полезной разности температуры ∆t(n) необходимо знать распределение упариваемой воды, концентрации растворов и их температуры кипения. Эти величины находят методом последовательных приближений.
Первое приближение:
Производительность установки по выпариваемой воде определяют из уравнения материального баланса:
W=Gн *(1-хн/хк). (3.2)
Подставив, получим:
18 т/ч =5 кг/с
W=5(1-4/19) =3,95 кг/с
3.1.1 Концентрации упариваемого раствора
Распределение концентраций раствора по корпусам установки зависит от соотношения нагрузок по выпариваемой воде в каждом аппарате. В первом приближении на основании практических данных принимают, что производительность по выпариваемой воде распределяется между корпусами в соответствии с соотношением: w1:w2=1,0:1,1.
Тогда:
w1=1,0W/(1,0+1,1)=3,95/2,1=1,88 кг/с
w2=1,1W/(1,0+1,1)=4,345/2,1=2,068 кг/с
Далее рассчитываем концентрации растворов в корпусах:
х1=Gн*хн/(Gн-w1)=5*0,04/(5-1,88)=0,064, или 6,4%
х2=Gн*хн/(Gн-w1-w2)= 5*0,04/(5-1,88-2,068)=0,19, или 19%
Концентрация раствора в последнем корпусе х2 соответствует заданной концентрации упаренного раствора.
3.1.2 Температура кипения раствора
Принимаем, что обогрев производится греющим паром - насыщенным водяным паром давлением Рг1=4 ат или 0,3924 МПа.
Общий перепад давлений в установке равен:
ΔРоб=Рг1-Рбк=0,3924-0,011=0,3814 МПа.
По давлениям паров находим их температуры и энтальпии:
Р, МПа. t, °C. I, кДж/кг.
Рг1=0,3924 tг1=142,9 I1=2744
Рг2=0,2017 tг2=120,3 I2=2711
Рбк=0,011 tбк=47,42 Iбк=2585
При определении температуры кипения раствора в аппарате исходим из следующих допущений. Распределение концентраций раствора в выпарном аппарате с естественной циркуляцией практически соответствует модели идеального перемешивания. Поэтому концентрацию кипящего раствора принимаем равной конечной в данном корпусе и, следовательно, температуру кипения раствора определяем при конечной концентрации.
Изменение температуры кипения по высоте кипятильных труб происходит вследствие изменения гидростатического давления столба жидкости, температуру кипения раствора в корпусе принимаем соответствующей температуре кипения в среднем слое жидкости. Таким образом, температура кипения раствора в корпусе отличается от температуры греющего пара в последующем корпусе на сумму температурных потерь ΣΔ от температурной (Δ’), гидростатической (Δ") и гидродинамической (Δ'") депрессий:
ΣΔ=Δ’+Δ"+Δ'"
Гидродинамическая депрессия обусловлена потерей давления пара на преодоление гидравлических сопротивлений трубопроводов при переходе из корпуса в корпус. Обычно в расчетах принимают Δ"'=1,0 -1,5 °С на корпус.
Примем Δ'"=1,0 °С.
Тогда температура вторичных паров в корпусах равна:
tвп1=tг2+Δ1'"=120,3+1,0=121,3°С;
tвп2=tбк+ Δ2'"=47,42+1,0=48,42°С;
Сумма гидродинамических депрессий
Σ Δ'"=1+1=2, °С
По температурам вторичных паров определим их давления. Они равны соответственно (в МПа): Рвп1=0,208 МПа; Рвп2=0,0115 МПа.
Определяем гидростатическую депрессию. Давление в среднем слое кипящего раствора Pср равно:
Рср=Рвп+ρ∙g∙Н∙(1-ε)/2, (3.4)
где Н - высота кипятильных труб в аппарате, м; ρ- плотность кипящего раствора, кг / куб.м; ε - паронаполнение (объемная доля пара в кипящем растворе), куб.м/куб.м.
Для выбора значения Н необходимо ориентировочно оценить поверхность теплопередачи выпарного аппарата Fop. При кипении водных растворов можно принять удельную тепловую нагрузку аппаратов с естественной циркуляцией q=20000-50000 Вт/кв.м.
Примем q=40000 Вт/кв.м. Тогда поверхность теплопередачи ориентировочно равна: Fop=Q/q=w1∙r1/q=1,88∙2187∙103/40000=102,79 м2.
где r1- теплота парообразования вторичного пара, Дж/кг, r1=2187 кДж/кг.
По ГОСТ 11987-81 трубчатые аппараты с естественной циркуляцией и выносной греющей камерой состоят из кипятильных труб высотой 4 и 5м при диаметре dн=38 мм и толщине стенки δст=2 мм.
Примем высоту кипятильных труб Н=4 м. При пузырьковом (ядерном) режиме кипения паронаполнение составляет ε=0,4-0,6.
Примем ε =0,5. Плотность водных растворов, в том числе раствора CuSO4 при температуре 25 °С и соответствующих концентрациях в корпусах равна:
ρ1=1063 кг/м3
ρ2=1218 кг/м3
При определении плотности растворов в корпусах пренебрегаем изменением ее с повышением температуры от 25°С до температуры кипения ввиду малого значения коэффициента объемного расширения и ориентировочно принятого значения ε.
Давления в среднем слое кипятильных труб корпусов (в Па) равно:
Р1ср=Рвп1+ρ1∙g∙Н∙(1-ε)/2=208000 +1063∙9,81∙4∙(1-0,5)/2=0.2184 МПа
Р2ср=Рвп2+ρ2∙g∙Н∙(1-ε)/2=11400 +1218∙9,81∙4∙(1-0,5)/2=0,0231 МПа
Этим давлениям соответствуют следующие температуры кипения и теплоты испарения растворителя:
Р, Мпа. t, °C. r, кДж/кг.
Р1ср=0,2184 tcp1=122,6 rвп1=2187
Р2ср=0,0231 tcp2=62,85 rвп2=2344
Определим гидростатическую депрессию по корпусам (в °С):
Δ"1=tcp1-tвп1=122,6-121, 3 =1,3°С.
Δ"2=tcp2-tвп2=62,85-48,42=14,43°С
Сумма гидростатических депрессий:
Σ Δ"= Δ1"+ Δ2"=1,3+14,43=15,73°С
Температурную депрессию Δ' определим по уравнению Тищенко:
Δ'=1,62∙10-2∙Δ'атм∙(Т2)/rвп, (3.5)
где Т - температура паров в среднем слое кипятильных труб, К; Δ'атм - температурная депрессия при атмосферном давлении.
Находим значение Δ'атм1= 0,192 °С; Δ'атм2=0,57 °С.
Δ'1=1,62∙10-2∙Δ'атм1∙(Т12)/rвп1;
Δ'1=1,62∙10-2∙ (122,6+273)2 ∙0,192/2187 =0,22 °С;
Δ'2=1,62∙10-2∙Δ'атм2∙(Т22)/rвп2;
Δ'2=1,62∙10-2∙(66+273)2∙0,57/2344=0,44 °С.
Сумма температурных депрессий:
ΣΔ'=Δ'1+Δ'2=0,22+0,44=0,66°С
Температуры кипения растворов равны (в °С):
tк1=tг2+Δ'1+Δ"1+Δ'"1=120,3+0,22+1,3+1=122,82 °С
tк2= tбк+Δ'2+Δ"2+Δ'"2=47,42+0,44+14,43+1=63,29 °С
3.1.3 Полезная разность температур
Общая полезная разность температур равна:
ΣΔtп=Δtп1+ Δtп2
Полезные разности температур по корпусам (в °С) равны:
Δtп1=tг1-tкl=142,9-122,82=20,08°С
Δtп1=tг1-tкl=120, 3-63,29=57,01°С
Тогда общая полезная разность температуры равна:
ΣΔtп=20,08+57,01=77,09 °С.
Проверим общую полезную разность температуры:
ΣΔtп=tг1-tбк-(ΣΔ'+ΣΔ"+ΣΔ'")=142,9-47,42-(0,66+15,73+2)=77,09°С
3.1.4 Определение тепловых нагрузок
Расход греющего пара, производительность каждого корпуса по выпаренной воде и тепловые нагрузки по корпусам определим путем совместного решения уравнений тепловых балансов и уравнения баланса по воде для всей установки:
Q1=D∙(Iг1-i1)=1,03∙[Gн∙Сн∙(tк1-tн)+w 1∙(Нвп1-Св∙tк1)+Qконц1]; (3.6)
Q2= w1∙(Iг2-i2)=1,03∙[(Gн- w1)∙С1∙(tк2-tк1)+w 2∙(Iвп2-Св∙tк2)+Qконц2]; (3.7)
где 1,03 - коэффициент, учитывающий 3% потерь тепла в окружающую среду;
Сн, С1 - теплоемкости растворов соответственно исходного и в первом корпусах. кДж/(кг*К); Сн =4.14кДж/(кг*К), С1=3.994кДж/(кг*К).Св- теплоемкость воды, кДж/(кг*К).;tн - температура кипения исходного раствора при давлении в корпусе,0С; D- расход греющего пара, кг/с;
При решении уравнения можно принять:
Iвп1 ≈ IГ2; Iвп2 ≈ Iбк;