Смекни!
smekni.com

Расчет и проектирование выпарной установки непрерывного действия для выпаривания водного раствора CuSO4 (стр. 4 из 7)

2.3 Принцип действия проектируемой установки

Технологическая схема выпарной установки показана на листе 1 графической части. Исходный разбавленный раствор с концентрацией 4 % масс и температурой 25 0С из промежуточной емкости центробежным насосом подаётся в теплообменник (ГОСТ 15118-79), где подогревается до температуры близкой к температуре кипения, а затем в выпарную установку (ГОСТ 11987-81). Предварительный подогрев раствора производится насыщенным водяным паром.

Выпарной аппарат обогревается свежим водяным паром. Вторичный пар, образующийся при концентрировании раствора, направляется в барометрический конденсатор.

Самопроизвольный перетек раствора и вторичного пара в корпусе возможен благодаря общему перепаду давлений, возникающему в результате создания вакуума конденсацией вторичного пара, а в барометрическом конденсаторе смешения (где заданное давление поддерживается подачей охлаждающей воды и отсосом неконденсирующихся газов вакуум-насосом). Смесь охлаждающей воды и конденсата выводится из конденсатора при помощи барометрической трубы с гидрозатвором. Образующийся концентрированный раствор центробежным насосом подаётся в промежуточную емкость упаренного раствора концентрацией 19 % масс.

Конденсат греющего пара из выпарного аппарата выводится с помощью конденсатоотводчика.

Важное значение имеет охрана окружающей среды. Поэтому необходимо строгое соблюдение технологии очистки сточных вод, отходящих газов и т.д. Целесообразно применение мер профилактики по предотвращению опасных выбросов.

3. РАСЧЕТ ОСНОВНОГО ОБОРУДОВАНИЯ

3.1 Определение поверхности теплопередачи выпарного аппарата

Поверхность теплопередачи выпарной установки определяют по основному уравнению теплопередачи:

F=Q/(K*Δtп). (3.1)

Для определения тепловой нагрузки Q, коэффициента теплопередачи К и полезной разности температуры ∆t(n) необходимо знать распределение упариваемой воды, концентрации растворов и их температуры кипения. Эти величины находят методом последовательных приближений.

Первое приближение:

Производительность установки по выпариваемой воде определяют из уравнения материального баланса:

W=Gн *(1-хнк). (3.2)

Подставив, получим:

18 т/ч =5 кг/с

W=5(1-4/19) =3,95 кг/с

3.1.1 Концентрации упариваемого раствора

Распределение концентраций раствора по корпусам установки зависит от соотношения нагрузок по выпариваемой воде в каждом аппарате. В первом приближении на основании практических данных принимают, что производительность по выпариваемой воде распределяется между корпусами в соответствии с соотношением: w1:w2=1,0:1,1.

Тогда:

w1=1,0W/(1,0+1,1)=3,95/2,1=1,88 кг/с

w2=1,1W/(1,0+1,1)=4,345/2,1=2,068 кг/с

Далее рассчитываем концентрации растворов в корпусах:

х1=Gн*хн/(Gн-w1)=5*0,04/(5-1,88)=0,064, или 6,4%

х2=Gн*хн/(Gн-w1-w2)= 5*0,04/(5-1,88-2,068)=0,19, или 19%

Концентрация раствора в последнем корпусе х2 соответствует заданной концентрации упаренного раствора.

3.1.2 Температура кипения раствора

Принимаем, что обогрев производится греющим паром - насыщенным водяным паром давлением Рг1=4 ат или 0,3924 МПа.

Общий перепад давлений в установке равен:

ΔРобг1бк=0,3924-0,011=0,3814 МПа.

По давлениям паров находим их температуры и энтальпии:

Р, МПа. t, °C. I, кДж/кг.

Рг1=0,3924 tг1=142,9 I1=2744

Рг2=0,2017 tг2=120,3 I2=2711

Рбк=0,011 tбк=47,42 Iбк=2585

При определении температуры кипения раствора в аппарате исходим из следующих допущений. Распределение концентраций раствора в выпарном аппарате с естественной циркуляцией практически соответствует модели идеального перемешивания. Поэтому концентрацию кипящего раствора принимаем равной конечной в данном корпусе и, следовательно, температуру кипения раствора определяем при конечной концентрации.

Изменение температуры кипения по высоте кипятильных труб происходит вследствие изменения гидростатического давления столба жидкости, температуру кипения раствора в корпусе принимаем соответствующей температуре кипения в среднем слое жидкости. Таким образом, температура кипения раствора в корпусе отличается от температуры греющего пара в последующем корпусе на сумму температурных потерь ΣΔ от температурной (Δ’), гидростатической (Δ") и гидродинамической (Δ'") депрессий:

ΣΔ=Δ’+Δ"+Δ'"

Гидродинамическая депрессия обусловлена потерей давления пара на преодоление гидравлических сопротивлений трубопроводов при переходе из корпуса в корпус. Обычно в расчетах принимают Δ"'=1,0 -1,5 °С на корпус.

Примем Δ'"=1,0 °С.

Тогда температура вторичных паров в корпусах равна:

tвп1=tг21'"=120,3+1,0=121,3°С;

tвп2=tбк+ Δ2'"=47,42+1,0=48,42°С;

Сумма гидродинамических депрессий

Σ Δ'"=1+1=2, °С

По температурам вторичных паров определим их давления. Они равны соответственно (в МПа): Рвп1=0,208 МПа; Рвп2=0,0115 МПа.

Определяем гидростатическую депрессию. Давление в среднем слое кипящего раствора Pср равно:

Рсрвп+ρ∙g∙Н∙(1-ε)/2, (3.4)

где Н - высота кипятильных труб в аппарате, м; ρ- плотность кипящего раствора, кг / куб.м; ε - паронаполнение (объемная доля пара в кипящем растворе), куб.м/куб.м.

Для выбора значения Н необходимо ориентировочно оценить поверхность теплопередачи выпарного аппарата Fop. При кипении водных растворов можно принять удельную тепловую нагрузку аппаратов с естественной циркуляцией q=20000-50000 Вт/кв.м.

Примем q=40000 Вт/кв.м. Тогда поверхность теплопередачи ориентировочно равна: Fop=Q/q=w1∙r1/q=1,88∙2187∙103/40000=102,79 м2.

где r1- теплота парообразования вторичного пара, Дж/кг, r1=2187 кДж/кг.

По ГОСТ 11987-81 трубчатые аппараты с естественной циркуляцией и выносной греющей камерой состоят из кипятильных труб высотой 4 и 5м при диаметре dн=38 мм и толщине стенки δст=2 мм.

Примем высоту кипятильных труб Н=4 м. При пузырьковом (ядерном) режиме кипения паронаполнение составляет ε=0,4-0,6.

Примем ε =0,5. Плотность водных растворов, в том числе раствора CuSO4 при температуре 25 °С и соответствующих концентрациях в корпусах равна:

ρ1=1063 кг/м3

ρ2=1218 кг/м3

При определении плотности растворов в корпусах пренебрегаем изменением ее с повышением температуры от 25°С до температуры кипения ввиду малого значения коэффициента объемного расширения и ориентировочно принятого значения ε.

Давления в среднем слое кипятильных труб корпусов (в Па) равно:

Р1срвп11∙g∙Н∙(1-ε)/2=208000 +1063∙9,81∙4∙(1-0,5)/2=0.2184 МПа

Р2срвп22∙g∙Н∙(1-ε)/2=11400 +1218∙9,81∙4∙(1-0,5)/2=0,0231 МПа

Этим давлениям соответствуют следующие температуры кипения и теплоты испарения растворителя:

Р, Мпа. t, °C. r, кДж/кг.

Р1ср=0,2184 tcp1=122,6 rвп1=2187

Р2ср=0,0231 tcp2=62,85 rвп2=2344

Определим гидростатическую депрессию по корпусам (в °С):

Δ"1=tcp1-tвп1=122,6-121, 3 =1,3°С.

Δ"2=tcp2-tвп2=62,85-48,42=14,43°С

Сумма гидростатических депрессий:

Σ Δ"= Δ1"+ Δ2"=1,3+14,43=15,73°С

Температурную депрессию Δ' определим по уравнению Тищенко:

Δ'=1,62∙10-2∙Δ'атм∙(Т2)/rвп, (3.5)

где Т - температура паров в среднем слое кипятильных труб, К; Δ'атм - температурная депрессия при атмосферном давлении.

Находим значение Δ'атм1= 0,192 °С; Δ'атм2=0,57 °С.

Δ'1=1,62∙10-2∙Δ'атм1∙(Т12)/rвп1;

Δ'1=1,62∙10-2∙ (122,6+273)2 ∙0,192/2187 =0,22 °С;

Δ'2=1,62∙10-2∙Δ'атм2∙(Т22)/rвп2;

Δ'2=1,62∙10-2∙(66+273)2∙0,57/2344=0,44 °С.

Сумма температурных депрессий:

ΣΔ'=Δ'1+Δ'2=0,22+0,44=0,66°С

Температуры кипения растворов равны (в °С):

tк1=tг2+Δ'1+Δ"1+Δ'"1=120,3+0,22+1,3+1=122,82 °С

tк2= tбк+Δ'2+Δ"2+Δ'"2=47,42+0,44+14,43+1=63,29 °С

3.1.3 Полезная разность температур

Общая полезная разность температур равна:

ΣΔtп=Δtп1+ Δtп2

Полезные разности температур по корпусам (в °С) равны:

Δtп1=tг1-tкl=142,9-122,82=20,08°С

Δtп1=tг1-tкl=120, 3-63,29=57,01°С

Тогда общая полезная разность температуры равна:

ΣΔtп=20,08+57,01=77,09 °С.

Проверим общую полезную разность температуры:

ΣΔtп=tг1-tбк-(ΣΔ'+ΣΔ"+ΣΔ'")=142,9-47,42-(0,66+15,73+2)=77,09°С

3.1.4 Определение тепловых нагрузок

Расход греющего пара, производительность каждого корпуса по выпаренной воде и тепловые нагрузки по корпусам определим путем совместного решения уравнений тепловых балансов и уравнения баланса по воде для всей установки:

Q1=D∙(Iг1-i1)=1,03∙[Gн∙Сн∙(tк1-tн)+w 1∙(Нвп1-Св∙tк1)+Qконц1]; (3.6)

Q2= w1∙(Iг2-i2)=1,03∙[(Gн- w1)∙С1∙(tк2-tк1)+w 2∙(Iвп2-Св∙tк2)+Qконц2]; (3.7)

где 1,03 - коэффициент, учитывающий 3% потерь тепла в окружающую среду;

Сн, С1 - теплоемкости растворов соответственно исходного и в первом корпусах. кДж/(кг*К); Сн =4.14кДж/(кг*К), С1=3.994кДж/(кг*К).Св- теплоемкость воды, кДж/(кг*К).;tн - температура кипения исходного раствора при давлении в корпусе,0С; D- расход греющего пара, кг/с;

При решении уравнения можно принять:

Iвп1 ≈ IГ2; Iвп2 ≈ Iбк;