К общим недостаткам выпарных аппаратов с принудительной циркуляцией следует отнести повышенный расход энергии, связанный с необходимостью работы циркуляционного насоса.
Все рассмотренные выше конструкции аппаратов по структуре движения в них жидкости близки к моделям идеального перемешивания, поэтому при сравнительно большом объеме циркулирующего раствора последний находится при повышенных температурах достаточно длительное время (а отдельные частицы жидкости - бесконечно долго). Это существенно затрудняет выпаривание нетермостойких растворов. Для таких растворов можно использовать пленочные выпарные аппараты.
1.3.3 Пленочные выпарные аппараты
Их относят к группе аппаратов, работающих без циркуляции; процесс выпаривания осуществляется за один проход жидкости по кипятильным трубам, причем раствор движется в них в виде восходящей или нисходящей пленки жидкости. Как правило, эти аппараты работают при прямоточном движении раствора и образующегося вторичного пара, который занимает центральную часть труб. В связи с этим здесь отсутствует гидростатический столб парожидкостной смеси и, следовательно, гидростатическая депрессия. Для обеспечения заданных пределов изменения концентраций упариваемых растворов кипятильные трубы делают длинными (6-10 м).
Выпарной аппарат с восходящей пленкой жидкости (рис. 6) работает следующим образом. Снизу заполняют раствором трубы на 1/4 и 1/5 их высоты, подают греющий пар, который вызывает интенсивное кипение. Выделяющийся вторичный пар, поднимаясь по трубам, за счет сил поверхностного трения увлекает за собой раствор. В сепараторе пар и раствор отделяются друг от друга.
Рис. 6 - Выпарные пленочные аппараты с восходящей пленкой жидкости: 1 – греющая камера; 2 - сепоратор
В выпарном аппарате с нисходящей пленкой жидкости (рис. 7) исходный раствор подают в верхнюю часть греющей камеры 1, где обычно расположен распределитель жидкости, из которого последняя по трубам стекает вниз. Образующийся вторичный пар также движется в нижнюю часть нагревательной камеры, откуда вместе с жидкостью попадает в сепаратор 2 для отделения от раствора.
Рис. 7 - Выпарные пленочные аппараты с нисходящей пленкой жидкости: 1 – греющая камера; 2 – сепаратор
Для снижения температуры кипения раствора процесс, как правило, проводят под вакуумом. В этих аппаратах удается упаривать также растворы, склонные к интенсивному пенообразованию. Вместе с этим пленочным аппаратам свойствен ряд недостатков. Они очень чувствительны к изменениям нагрузок по жидкости, в особенности при малых расходах растворов. Существует определенный минимальный расход раствора, ниже которого не удается достигнуть полного смачивания поверхности теплопередачи. Это может приводить к местным перегревам трубок, выделению твердых осадков, резкому снижению интенсивности теплопередачи. В таких аппаратах не рекомендуется выпаривать кристаллизующиеся растворы. Для них также требуются большие производственные площади.
Всем трубчатым выпарным аппаратам свойствен существенный недостаток: в них затруднительно, а часто и практически невозможно выпаривать агрессивные растворы. Для таких растворов применяют аппараты, в которых отсутствуют теплопередающие поверхности, а процесс теплообмена осуществляют путем непосредственного соприкосновения теплоносителя (нагретых или топочных газов) с упариваемым раствором.
1.4 Патентный обзор
Этот раздел включает в себя краткое описание патентов на изобретения по теме выпаривание за 1991-2002 годы.
1.4.1 Вертикальный выпарной аппарат(1805571)
Использование: в глиноземном производстве. Сущность изобретения: аппарат состоит из греющей камеры, содержащей, в свою очередь, кожух и пучок греющих труб циркуляционной трубы, установленной внутри трубного пучка, сепаратора, трубных решеток, состыкованных с паровой и конденсатной камерами, а также патрубком для раствора, пара и конденсата. При этом греющая камера установлена внутри сепаратора с зазором относительно верхней трубной решетки, а циркуляционная труба имеет высоту, меньшую, чем греющие трубы.
1.4.2 Выпарная установка(2050908)
Изобретение относится к химической технологии и может быть использовано при регенерации воды из отработанных электролитов и концентрировании сточных вод гальванотехники. Установка содержит камеру испарения с нагревателем и камеру конденсации с охладителем. Камеры соединены замкнутым воздуховодом с вентилятором, снабжены подводящими и отводящими штуцерами и выполнены в виде аппаратов, каждый из которых включает установленные в верхней части циклоннопенное, а в нижней-теплообменное устройство. Теплообменное устройство представляет собой вертикальный концентрический пучок труб, расположенный вокруг центральной трубы, причем нижняя трубная доска пучка установлена над штуцером подвода обрабатываемого продукта в аппарат, а верхняя совпадает с нижней границей окна подвода воздуха под слой жидкости циклонно-пенного устройства.
1.4.3 Способ выпаривания алюминатных растворов и установка для его осуществления(2194559)
Изобретение относится к области производства глинозема, конкретно к процессу выпаривания алюминатных растворов в противоточных установках. При упаривании алюминатных растворов, включающем нагрев раствора, последовательное упаривание и самоиспарение, часть раствора подают из второго по ходу пара выпарного аппарата в первый с поддержанием в растворе первого корпуса концентрации каустического оксида натрия в пределах 250-290 г/л и оставшуюся часть раствора второго корпуса и раствор первого корпуса выводят на самоиспарение.
2. ОБОСНОВАНИЕ И ОПИСАНИЕ УСТАНОВКИ
2.1 Обоснование выбора технологической схемы
Технологическая схема выпарной установки представляет собой систему выпарных аппаратов, барометрического конденсатора, теплообменника, насосов, емкостей для исходного и упаренного растворов и трубопроводов участвующих в процессе выпаривания раствора.
Согласно заданию проектируемая установка состоит из двух корпусов и представляет собой установку непрерывного действия, работающую под давлением. При выпаривании под повышенным давлением можно использовать вторичный пар, как для выпаривания, так и для других нужд, не связанных с процессом выпаривания.
Схему проектируемой выпарной установки рационально принять прямоточной, что предполагает не принудительное (без затраты внешней работы) движение раствора через всю систему и минимальные потери тепла с уходящим выпаренным раствором (уходит при температуре кипения последнего корпуса).
Так как температура поступающего раствора значительно ниже температуры кипения, то целесообразно его предварительно подогреть в отдельном теплообменнике, чтобы выпарной аппарат работал только как испаритель, а не частично как подогреватель, так как в последнем случае коэффициент теплопередачи аппарата несколько снижается.
Подогрев производится в кожухотрубном теплообменнике за счет тепла греющего пара.
2.2 Обоснование выбора оборудования
В разрабатываемом процессе используются выпарные аппараты, обогреваемые конденсирующимся водяным паром, в частности аппараты, с вынесенной греющей камерой. При размещении нагревательной камеры вне корпуса аппарата имеется возможность повысить интенсивность выпаривания не только за счёт увеличения разности плотностей жидкости и паро-жидкостной смеси в циркуляционном контуре, но и за счёт увеличения длины кипятильных труб.
Аппарат работает при более интенсивной естественной циркуляции, обусловленной тем, что циркуляционная труба не обогревается, а подъёмный и опускной участки циркуляционного контура имеют значительную высоту.
Выносная греющая камера легко отделяется от корпуса аппарата, что облегчает и ускоряет ее чистку и ремонт. Ревизию и ремонт греющей камеры можно производить без полной остановки аппарата(а лишь при снижении его производительности), если присоединить к его корпусу две камеры.
Конструкция теплообменных аппаратов выбирается на основе расчета по определению поверхности теплопередачи.До температуры кипения исходный раствор подогревается в отдельном теплообменнике за счет тепла греющего пара, что позволяет избежать увеличения поверхности. Кожухотрубчатые теплообменники относятся к числу наиболее часто применяемых, который состоит из корпуса и приваренного к нему трубных решеток. В теплообменнике одна среда движется внутри труб, а другая в межтрубном пространстве. Среды направляются противотоком друг к другу. Раствор подаётся снизу вверх, а насыщенный водяной пар в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремится двигаться данная среда под влиянием изменения её плотности при нагревании. Кроме того, при указанном направлении движения сред достигается более равномерное распределение скоростей и идентичные условия теплообмена по площади поперечного сечения аппарата.
Вторичный пар из последнего корпуса (в данном случае второго) отводится в барометрический конденсатор, в котором при конденсации пара создается требуемое разряжение. Сухой полочный барометрический конденсатор работает при противоточном движении охлаждающей воды и пара. Воздух и неконденсирующиеся газы, попадающие в установку главным образом с охлаждающей водой (в конденсаторе), а также через неплотности трубопроводов отсасываются через ловушку-брызгоулавливатель вакуум-насосом.
С помощью вакуум-насоса поддерживается также устойчивый вакуум, так как остаточное давление в конденсаторе может изменяться с колебанием температуры воды, поступающей в конденсатор.