Смекни!
smekni.com

Расчет и подбор выпарной установки (стр. 2 из 6)

Согласно правилу Бабо, отношения давления паров растворителя над раствором Р к давлению паров над чистым растворителем Рs при температуре кипения раствора не зависит от рабочего давления и температуры его кипения:

Р/Рs = (Р/Рs)ст = const

Т. о. Температура кипения раствора 49% (NH4)2SO4 при атмосферном давлении

t = 1070С. (3, стр. 510) Рsст = 1,294 бар=1,294*105 Па (2, стр. 17)

Const = (Р/Рs)ст =9,81*104/1,294*105 = 0,758

Тогда Рs=Р/ const=0,197/0,758=0,260 бар

По (2, стр. 23) находим искомую температуру кипения раствора, равную температуре кипения воды: t3 = 64,080С. Найдём q3:Р3=0,197 бар, то по (2, стр. 23) q3=58,70С.

Тогда d3реал = t3 - q3=64,08 - 58,7 = 5,38 0С.

3.3. Суммарная полезная разность температур:

Dс= Т1q3dd2-d3dгd2г = 147,1-58,7-0,4-1,2-5,38-1=80,420С

d2г примерно от 1 до 3 С. Принимаем dг = 1С

где давление греющего пара 0,4МПа (= 3,94ат), то по (2, стр.43) Т1=147,1 0С.

Dс=DD2+D3

D1:D2:D3=1 : 1,1 : 1,5

D1= 22,340С

D2= 24,570С

D3= 33,510С.

3.4. Заполнение предварительной таблицы.

Значения давлений и энтальпий взяты из (2, стр. 17).

Параметр Предварит. Вар. Окончат. Вар.
1 Темп. гр. Пара Т 0С 147,1 118,8 83,6 150,0 127,0 92,0
2 Полезн.разность темп. D 0С 22,34 24,57 33,51 18,6 29,0 48,8
3 Темп.кип р-ра T 0С 124,76 89,4 43,4 131,4 98,0 43,4
4 Темп.депрессия d 0С 2,9 4,3 4,7 2,9 4,3 4,7
5 Темп.вт. пара q 0С 120,3 85,1 38,7 128,5 93,7 38,7
6 Гидр.депрессия d 0С 1,5 1,5 1,5 1,5
7 Давл.гр. пара Pгр МПа 0,476 0,192 0,056 0,476 0,247 0,076

8 Давл.вт. пара P МПа 0,199 0,058 0,007 0,262 0,081 0,007
9 Энтальпия гр.п. H кДж/кг 2748,6 2706,3 2650,6 2708,4 2718,5 2664,4
10 Энтальп.вт.пара I кДж/кг 2708,4 2653,5 2572,2 2721,4 2668,2 2572,2
11 Конц.р-ра A % 14,29 18,18 25,00 13,6 17,1 25,0

3.5. Уточнение значений W1, W2, W3 .

Уточнение значений W1, W2, W3 на основе величин, содержащихся в предварительном варианте таблицы, путём совместного решения системы уравнений:

Q1=D1(h1-ck1T1)=S0c0(t1-t0)+W1(i1-cpt1)

Q2=(W1-E1)(h2-ck2T2)=S1c1(t2-t1)+W2(i2-cpt2)

Q3=W2(h3-ck3T3)=S2c2(t3-t2)+W3(i3-cpt3), которые описывают тепловые балансы корпусов (кроме первого корпуса) и дoполненный уравнением:

W= W1+ W2+ W3.

Пусть X1 = h1 – ck1T1 = 2117,1 кДж/кг

X2 = h2 – ck2T2 = 2208,4 кДж/кг

X3 = h3 – ck3T3 = 2300,5 кДж/кг

Y1 = t1 – t0 = 21,7 0С

Y2 = t2 – t1 = -33,9 0С

Y3 = t3 – t2 = -46,0 0С

Z1 = i1 – cpt1 = 2193,3 кДж/кг

Z2 = i2 – cpt2 =2279,9 кДж/кг

Z3 = i3 – cpt3 = 2390,8 кДж/кг, где Со – теплоёмкость исходного раствора (10% (NH4)2SO4 при температуре кипения t0 = 101,5 0С): Со=3,65 кДж/кгК (4, стр.59).

По (3, стр.535) находим:

ck1 = 1,005 ккал/кгК = 4,21 кДж/кгК (при 150,0 0С)

ck2 = 1,002 ккал/кгК = 4,19 кДж/кгК (при 118,8 0С)

ck3 = 1,000 ккал/кгК = 4,19 кДж/кгК (при 83,6 0С)

cp =4,18 кДж/кгК

Т.о., W1 = X2E2/(X2+cpY2) + Soc0Y2/(X2+cpY2)+ +Z2W2/(X2+cpY2) = 1,1031 W2 +2009,7

W2 = Y3S0c0/(X3+cpY3+Z3) + Z3W/(X3+cpY3+Z3)-(cpY3+Z3) * W1/(X3+cpY3+Z3) = -0,4887 W1 +5630,7

Решая систему уравнений, получим:

W1 = 5342 кг/ч

W2 = 3021 кг/ч

W3 = 3638 кг/ч.

3.6. Расчёт предварительных значений тепловых потоков:

Q1 = S0c0(t1-t0)+W1(i1-cpt1) = =20000*3,65*21,7+5342*2193,3=13,3*106 кДж/ч = 3,69*106 Вт

Q2=(W1-E1)(h2-ck2T2)=(5342-3000)*2208,4=5,17*106 кДж/ч= =1,44*106 Вт

Q3=W2(h3-ck3T3)=3021*2300,5=6,95*106 кДж/ч =1,93*106 Вт.

3.7. Расчёт комплексов А1, А2, А3, Во1, Во2, Во3.

3.7.1. A-комплекс, включающий теплофизические величины и зависящие от температур Т.

Примем высоту труб Н = 4000мм = 4м.

Для вертикальных труб:

А=0,94(l3r2rg/mH)1/4

Справочные данные: l,r, m - (3,стр.512); r- (3, стр. 523).

Ускорение свободного падения g = 9,82 м/с2. Заполним таблицу:

Т, 0С 150,0 118,8 83,5
 кг/м3 917 943 972
 Вт/м*К 68,4*10-2 68,6*10-2 67,5*10-2
Па*с 185*10-6 231*10-6 355*10-6
r, кДж/кг 2120 2207 2297
А, Дж/см2К3/4 8765,9 1513,8 1377,4

3.7.2. Во – коэффициенты отражающие свойства кипящего раствора и зависящие от давлений а, следовательно, и температур кипения в корпусах:

B0i = B0iB*j3,33, где B0iB = 46р0,57,

j - относительный коэффициент теплоотдачи для водных растворов неорганических веществ. j при пузырьковом кипении (NH4)2SO4 при атмосферном давлении найдем из графика зависимости j-а. График 1 строим на основании данных таблицы (1, стр. 40):

при а=10% j = 0,84

а=20% j = 0,68

На основании данных графика, заполняем таблицу:

а, % 14,29 18,18 25,00
Р, Бар 2,1 0,6 0,1
B0iB 70,2 34,4 12,4
0,77 0,72 0,60
B0i 29,4 11,5 2,26

3.8. Выбор конструкционного материала для выпарного аппарата.

Выбираем конструкционный материал, стойкий в среде кипящего раствора хлорида натрия в интервале изменения концентраций от 10 до 25%(5, стр. 309). В этих условиях химически стойкой является сталь марки Х18Н10Т. Скорость коррозии её менее 0,1мм/год (точечная коррозия). Коэффициент теплопроводности l = 16,4 Вт/м*К (5, стр. 101).

3.9. Расчёт поверхности теплообмена.

3.9.1. Расчёт комплексов для нахождения поверхности нагрева корпусов.

В случае равенства поверхностей обмена отдельных корпусов основное расчетное уравнение имеет вид:

Dс=1/F4/3S(Qi/Ai)4/3 + 1/FS(Qidст/lст) + 1/F0,3S(Qi/B0i)0,3,

где dст =2мм=0,002м - толщина стенки трубок. Заполним вспомогательную таблицу:

(Qi/Ai)4/3 Qidст/lст (Qi/B0i)0,3
1 3160,3 464,8 33,9
2 9324,1 180,7 33,8
3 15680,6 242,8 60,2
28165,1 888,2 127,8

3.9.2 Расчёт поверхности теплообмена.

Ведем в таблице:

F 1/F4/3S(Qi/Ai)4/3 1/FS(Qidст/lст) 1/FS(Qidст/lст)
60 119,91 14,80 32,66 167,4
70 97,63 12,68 31,02 141,3
80 81,71 11,10 29,67 122,5
90 69,83 9,87 28,53 108,2
100 60,68 8,88 27,54 97,1
110 53,44 8,07 26,68 88,2
120 47,58 7,40 25,92 80,9
130 42,77 6,83 25,24 74,8
140 38,74 6,34 24,62 69,7

На основании табличных данных строим график зависимости Dс от F, по которому определяем по известной Dс=96,40С истинную F: F = 100,7м2.

Тогда D1 = 18,60С

D2 = 29,00С

D3 = 44,80С

Тогда Dс=D1+D2+D3= 96,40С.

3.10. Заполнение окончательного варианта таблицы.

Давления и энтальпии были взяты из (2, стр. 17).

Таблица сошлась.

3.11. Уточнение значений W1, W2, W3 .

Уточнение значений W1, W2, W3 на основе величин, содержащихся в окончательном варианте таблицы (см.3.5.).

Пусть

X1 = h1 – ck1T1 = 2076,9 кДж/кг

X2 = h2 – ck2T2 = 2186,5 кДж/кг

X3 = h3 – ck3T3 = 2278,1 кДж/кг

Y1 = t1 – t0 = 29,9 0С

Y2 = t2 – t1 = -33,4 0С

Y3 = t3 – t2 = -54,6 0С

Z1 = i1 – cpt1 = 2172,3 кДж/кг

Z2 = i2 – cpt2 =2258,6 кДж/кг