Согласно данному алгоритму все составы концентрационного симплекса разбиваются на группы, объединенные термодинамическими связями и ограничениями (границами областей дистилляции и границей области расслаивания жидких фаз). Далее на основе выделенных групп определяются необходимые аппараты. Такой подход автоматически отбрасывает те аппараты, работа которых может привести к нежелательным продуктовым составам.
Эффективность предложенного подхода иллюстрируется на примере разделения реальной смеси этанол–вода с использованием толуола в качестве разделяющего агента (рис.5).
Авторами [49,50] предложен алгоритм для синтеза последовательностей разделения многокомпонентных азеотропных смесей. Вся процедура синтеза включает в себя несколько основных этапов:
Определение условий задачи. На данном этапе задают компоненты и состав разделяемой смеси, устанавливают наличие азеотропов, областей дистилляции, определяют целевые продукты.
Рис.5. Разделение смеси этанол (Э) – вода (В) – толуол (Т). а – фазовая диаграмма; б – П-граф; в – технологическая схема
Синтез последовательностей разделения. Генерируются графы, эксплицирующие все возможные последовательности разделения, без учета рециклов. На Рис.6 показан граф, соответствующий одному из возможных разделений четырехкомпонентной азеотропной смеси.
Рис.6. Концентрационный симплекс (а), граф-дерево (б) и суперструктура (в) при синтезе схем разделения четырехкомпонентной смеси. Компоненты указаны в порядке увеличения относительной летучести.
Образование рецикловых потоков. Создается суперструктура из колонн Рис.6в, каждый продуктовый поток которой потенциально является рецикловым, а каждое питание – точкой возврата обратного потока. При этом следует соблюдать ряд правил: азеотропы могут быть возвращены полностью или частично; нельзя направлять рецикл в колонну, из которой он получен; нельзя направлять рецикл в колонну, если в его состав входят компоненты, не присутствующие в какой-либо продуктовой фракции этой колонны; нельзя смешивать потоки, принадлежащие по составу разным областям дистилляции, за исключением разделения типа С ([51], линия материального баланса принадлежит разным областям).
Определение работоспособных вариантов. Эта процедура начинается с последних по ходу разделения колонн.
Таким образом, процедура синтеза последовательно генерирует все возможные варианты разделения n–компонентных азеотропных смесей, первоначально не требуя точных составов потоков. Это позволяет избежать ограничения на составы продуктовых фракций от определенного состава питания. Такой подход позволяет более широко использовать рециклы для их возврата как в отдельные колонны, так и в системы колонн.
Синтез множества ТСР, содержащих сложные колонны
Использование сложных колонн в качестве элементов технологических схем разделения представляет значительный интерес с точки зрения сокращения энергозатрат на разделение. Это связано с возможностью приближения процесса к термодинамически обратимой ректификации и снижением числа аппаратов (кипятильников, дефлегматоров) в технологической цепочке. Использование сложных колонн как элементов разделительного комплекса резко повышает число возможных вариантов организации процесса разделения.
Для перечисления вариантов разделения с использованием сложной колонны с боковыми отборами и боковыми секциями в работе [52] применена теория графов. В общем случае сложная колонна имеет Fi входов и Di выходов, секции которой работают при определенных соотношениях потоков пара и жидкости m = L/V. При условии несовпадения уровней входов и выходов число секций вычисляется по формуле:
(1)Каждому входу и выходу поставлена в соответствие вершина графа, а секции колонны – ребро. Вся совокупность вершин, в таком случае, состоит из вводов исходных фракций Fi, промежуточных выходов (Fi – 2) и двух выходов конечных фракций. В этих графах могут варьироваться уровень ввода исходной смеси и уровень расположения бокового отбора или боковой секции. Для определения возможных конфигураций графа использована комбинаторная теория размещений. Для случая одноуровневого питания число отборов равно числу компонентов с промежуточной летучестью (n–2), вычисляемых по
формуле (2)
(2)Метод "суперструктуры" применим и для синтеза технологических схем, содержащих сложные колонны. Такой алгоритм был впервые предложен авторами [53] в 70-х годах прошлого века в альтернативу комбинаторным методам.
В данном случае суперструктура представляет собой граф (рис.7), корневой вершиной которого является исходная смесь. Промежуточные вершины определяют отдельные стадии разделения исходной смеси. Конечные вершины представляют желаемые продукты. Ребра графа, соединяющие две соседние вершины, эксплицируют секции ректификационной колонны.
Суперструктура включает в себя все возможные конфигурации схем разделения, содержащие простые двухсекционные колонны и сложные колонны с полностью или частично связанными тепловыми и материальными потоками. Любая конфигурация может быть получена путем перемещения секций колонн, кипятильников, конденсаторов или промежуточных потоков между собой.
Рис.7. Суперструктура (а) и технологическая схема (б) разделения четырехкомпонентной смеси
В продолжение метода автором [54,55] разработан систематический алгоритм перечисления всех возможных конфигураций технологических схем с полностью связанными тепловыми и материальными потоками, содержащих один кипятильник и один дефлегматор.
Автором предложен ряд правил, с помощью которых происходит синтез суперструктуры:
Вверху и внизу граничных ветвей всегда есть бинарная составляющая;
Подгруппу, содержащую более трех компонентов, не следует подвергать четкому разделению на подгруппы, содержащие два и более компонентов;
Каждая подгруппа имеет три линейных сегмента за исключением потоков питания и продуктов.
Число различных конфигураций схем разделения j-компонентной смеси на чистые продукты определяется рекуррентным соотношением:
(3)где Ri – число конфигураций подграфа i-компонентной смеси.
Авторами [56] разработана универсальная "суперструктура" для синтеза схем, состоящих из простых двухсекционных колонн, смешанных последовательностей, а также комплексов с полностью связанными тепловыми и материальными потоками. Корневой вершиной суперструктуры является исходная смесь. Полный граф образуют вершины двух типов: 1) вершины, соответствующие всем возможным фракциям и продуктам, которые можно получить при разделении исходной смеси; 2) вершины, соответствующие операторам разделения. Каждому такому оператору соответствуют две разделительные секции. Общая структура включает в себя последовательное чередование продуктовых фракций и аппаратов, связанных друг с другом потоками (ребрами графа).
В работе [57] было показано, что множество технологических схем из простых двухсекционных колонн содержит в себе все возможные варианты организации деления исходной смеси и, соответственно, все возможные взаимосвязи секций разделительных аппаратов. Поэтому такие последовательности могут служить основой для синтеза других множеств технологических схем необратимой ректификации зеотропных смесей.
В работах [58,59] предложена стратегия синтеза множества схем, состоящих из колонн с разным числом секций, основанная на трансформации графов структур схем из простых двухсекционных колонн.
В данном методе используются ориентированные графы. При этом их вершинами выступают входы и выходы колонн, а ориентированными ребрами – потоковые связи. Тогда, схема ректификации (рис.8а) приобретает вид ориентированного мультиграфа с кратными разнонаправленными ребрами – образ секции колонны и одинарными ориентированными ребрами – образ потоковых связей между колоннами (рис.8б). Для упрощения структуры графа каждую кратную пару ребер можно заменить одним неориентированным ребром (рис.8в).
Рис.8. Иконографическое (а) и графовое (б, в) представление технологической схемы ректификации, ориентированные ребра – потоки, неориентированные ребра – секции,
– вершины-выходы, – вершины-входы колонн.Используя такую операцию перехода от иконографического изображения схемы к графовому, авторы представляют разделение трехкомпонентной смеси (рис.8а) как граф G1 (рис.9). Он имеет две идентичные по свойствам вершины (ВС), соответствующие кубовому продукту первой (выход) и питанию (вход) второй колонны. Объединением этих двух вершин и удалением из графа ориентированного ребра получается граф G2. Видно, что он является образом сложной колонны с боковой секцией. Вершина (ВС) (граф G2) есть вход жидкой фазы из боковой секции и выход паровой фазы в боковую секцию. Граф G3, соответствующий сложной колонне с боковым отбором, можно получить из G2 объединением вершин (ВС) и (В). Аналогичным образом осуществляется и операция перехода G4 ® G5 ® G6.