Среди стереорегулярных полимеров различают:
1. Регулярные полимеры:
а. полимеры синдиотактической структуры – боковые группы расположены последовательно по обе стороны от главной цепи:
б. полимеры изотактической структуры – все боковые группы – заместители расположены по одну сторону от главной макромолекулярной цепи:
2. К стереонерегулярным полимерам относятся полимеры атактической структуры – расположение боковых групп – заместителей беспорядочно:А. эластомеры ( каучуки, резина);
Б. пластомеры (пластики);
В. волокна (целлюлоза).
VII. в зависимости от способа переработки ВМС в изделии:
А. термопласты (перерабатываются расплавленными);
Б. реактопласты (для переработки требуют химической модификации) [1, 19, 20].
Тема 2. Синтез полимеров
Существуют 2 основных способа получения полимеров – реакция полимеризации и реакция поликонденсации.
Реакция полимеризации – это химический процесс соединения множества исходных молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы) полимера, не сопровождающийся выделением побочных низкомолекулярных веществ (Н2О, HCl).
В реакцию полимеризации вступают ненасыщенные мономеры, у которых двойная связь находится между углеродными атомами или между углеродом и любым другим атомом:
n H2C = CH2 (этилен) → [H2C = CH2] n
Как видно из примера, реакция полимеризации не приводит к изменению элементного состава мономера. Как и любая другая химическая реакция, полимеризация начинается с разрыва одних химических связей и возникновения других. Такой разрыв может происходить или по гетеролитическому, или гомолитическому механизму. В первом случае образуются ионы, во вротом – свободные радикалы.
Полимеризация, протекающая через образование ионов называется ионной, а идущая с участием свободных радикалов – радикальной.
Таким образом, радикальная и ионная полимеризация различаются природой активного центра, начинающего и ведущего макромолекулярную цепь.
Полимеризация мономеров протекает по цепному механизму.
I. Радикальная полимеризация
Активным центром цепной полимеризации является свободный радикал. Реакция радикальной полимеризации складывается из трех основных стадий: инициирования, роста цепи и ее обрыва.
А. Инициирование (образование активного центра). На этой стадии происходит образование свободных радикалов (R′·), которые легко взаимодействуют с различными непредельными соединениями (мономерами).
R′· + СН2 = СН2R → R′ - CH2 – CHR
В зависимости от способа образования свободных радикалов, начинающих реакционную цепь, различают несколько видов полимеризации: термическую, фотохимическую, радиационную и инициированную.
Одним из наиболее распространенных и часто применяемых на практике методов полимеризации является инициированная полимеризация. Она активируется соединениями, которые легко распадаются на свободные радикалы в условиях полимеризации. Такие соединения называют инициаторами полимеризации. Они содержат в своих молекулах неустойчивые химические связи (О – О, N – N, S – S, O – N и др.), которые разрываются при гораздо меньшей энергии, чем это требуется для образования свободного радикала из молекулы мономера (при ее активации). Инициаторами могут быть органические пероксиды и гидропероксиды, некоторые азо – и диазосоединения и другие вещества.
С6Н5 – СО – О – О – СО – С6Н5 → 2 С6Н5 – СОО· → 2 С6Н5·
Скорость распада инициатора на свободные радикалы можно увеличить не только повышением температуры, но и добавкой в реакционную среду специальных веществ – промоторов и активаторов.
Б. Рост цепи. Реакция роста цепи состоит в многократном присоединении молекул мономера к усложняющемуся каждый раз радикалу с сохранением свободного электрона в концевом звене растущей макромолекулы. Другими словами, растущая макромолекулярная цепь должна оставаться в период ее роста свободным макрорадикалом.
R′ + СН2 – СНR + СН2 = СНR → R′ - СН2 – СНR – СН2 – СНRR′ - [- CH2 – CHR -]n+1 – CH2 – CHR и т.д.
В результате таких последовательных реакций присоединения двойная связь мономера превращается в простую, что сопровождается выделением энергии.
В. Обрыв цепи. Конец роста цепи связан с исчезновением свободного электрона у конечного звена макромолекулы. Чаще всего это происходит в результате соединения между собой двух радикалов (реакция рекомбинации), что приводит к возникновению углеводородной цепи, не способной к дальнейшему росту.
R′ - [- CH2 – CHR -]n – CH2 – CHR + R′ - СН – СН2 – R′ →
R′ - [- CH2 – CHR -]n – CH2 – CHR – СН2 – R′
II. Ионная полимеризация
Ионная полимеризация протекает с образованием либо иона карбония, либо карбаниона, с последующей передачей по росту цепи положительного или отрицательного заряда. В зависимости от этого различают катионную (карбониевую) и анионную (карбанионную) полимеризацию.
Ионная полимеризация, как и радикальная, - цепной процесс.
Ионная полимеризация проходит в присутствии катализаторов, способствующих образованию ионов. Поэтому ионная полимеризация называется также каталитической полимеризацией. Процесс ионной полимеризации протекает также в три стадии.
II. 1. Катионная (карбониевая) полимеризация. Для проведения такой полимеризации используют катализаторы, обладающие электроно–акцепторными свойствами: кислоты, катализаторы Фриделя – Крафтса (AlCl3, BF3 и др.).
Полимеризацию проводят в присутствии специальных добавок – сокатализаторов (вода, кислоты, другие вещества, являющиеся донорами электронов).
А. Инициирование. На этой стадии происходит взаимодействие катализатора (AlCl3) и сокатализатора (НВ) с образованием комплексного соединения, которое проявляет свойства сильной кислоты
AlCl3 + НВ →[ AlCl3В]- + Н+
Эта кислота, отдавая протон молекуле мономера, превращает его в карбониевый ион, уравновешенный комплексным противоионом (ионная пара):
[ AlCl3В]-Н+ + СН2 = СНR → СН3 – СНRAlCl3В-
Сокатализаторами могут быть те вещества, которые взаимодействуют с катализаторами. Роль сокатализатора во многом зависит от характера реакционной среды. Большое значение имеет характер заместителя в молекуле иономера. Электронодонорные заместители (R) создают избыток электронной плотности на противоположном конце молекулы мономера и этим способствуют присоединению протона или карбатиона.
Б. Рост цепи. В процессе роста цепи полярные молекулы мономера присоединяются к растущему иону, «внедряясь» между макрокарбкатионом (со стороны его заряженной части) и противоионом (AlCl3В-):
СН2 = СНR + СН3 – СНR → СН3 – СНR – СН3 – СНR AlCl3В- →
СН3 – СНR - [- CH2 – CHR -]n – CH2 – CHR AlCl3В-
В. Обрыв цепи. Рост цепи прекращается при отщеплении (регенерации) от растущего иона комплексной кислоты или катализатора:
→ СН3 – СНR - [- CH2 – CHR -]n – CH2 – CHRB
→ СН3 – СНR - [- CH2 – CHR -]n – CH = CHR
В результате катализатор снова выделяется в свободном виде.
II. 2. Анионная (карбанионная) полимеризация. Катализаторами этой полимеризации служат электроннодонорные вещества – основания, щелочные металлы, гидриды металлов, амид калия, а также металлорганические соединения.
Механизм анионной полимеризации в присутствии катализатора KNH2 в среде жидкого аммиака.
А. Инициирование.
KNH2 ↔ К+ + NH2- → H2N – CH2 – CHRk+
Электроноакцепторные заместители (R) в молекуле мономера способствуют присоединению аниона. Оттягивая электронную плотность, они создают дефицит электронов на конце молекулы, к которому присоединяется отрицательно заряженная группа (NH2-).
Б. Рост цепи.
H2N – CH2 – CHR → H2N – CH2 – CHR – CH2 – CHRK+ →
H2N – [- CH2 – CHR - ]n+1 – CH2 – CHRK+
Как и при каталитической полимеризации, мономер занимает место между макрокарбанионом и противоионом.
В. Обрыв цепи. Прекращение роста макромолекулярной цепи может произойти в результате ее взаимодействия с растворителем: