Каучук (С5Н8)n – относится к эластомерам. Каучуки делят на натуральный (природный) и синтетические.
Натуральный каучук - природный непредельный полимер, представляет собой высокоэластичную массу, получаемого из млечного сока (латекса – взвесь мельчайших частичек каучука в воде) некоторых тропических деревьев (гевеи бразильской и др.) и растений (кок – сагыз, тау – сагыз, гваюла). Наиболее важным отличием натурального каучука является его высокая эластичность – способность к большому растяжению под действием внешней нагрузки и восстановлению своей формы после ее снятия. Натуральный каучук растворяется во многих углеводородах, образуя вязкие растворы.
Установлено, сто структурной единицей натурального каучука является изопреновая группировка:
- СН2 – С = СН – СН2 –СН3
Другими словами, натуральный каучук – полимер изопрена.
Другой разновидностью полимера изопрена является гуттаперча. В отличие от каучука она не обладает эластичностью причина этого в различном строении макромолекул этих природных полимеров.
Каучук – пластический материал. Изделия из него обладают рядом недостатков: при повышении температуры становятся липкими, теряют форму, а при низкой температуре – эластичность. Поэтому каучук нельзя использовать непосредственно. Для придания каучукам прочностных свойств, эластичности и термостойкости их подвергают обработке серой – вулканизируют (процесс протекает в специальных аппаратах при 140 – 180 0С). В результате каучук превращается в технический продукт – резину, которая содержит около 5% серы. Ее роль состоит в том, что она «сшивает» между собой макромолекулы каучука, образуя сетчатую структуру. Кроме серы в резину входят также различные наполнители, пластификаторы, красители, антиокислители (антиоксиданты) и др.
Высокая потребность промышленности каучуке привела к тому, что большая часть его производится синтетическим путем. Некоторые сорта синтетического каучука не уступают натуральному, а по некоторым свойствам даже превосходят его.
Темы докладов:
1. Применение полиэтиленов в промышленности и в быту. ПЭНД и ПЭВД.
2. Полипропилен: получение и применение.
3. Полиизобутилен. Каучук (природный и синтетический)
4. Полистирол.
5. Поливинилхлорид.
6. ПВА.
7. Полиметилметакрилат и тефлон.
8. Эпоксидные смолы. Клеи.
9. Фенолформальдегидные полимеры.
10. Целлюлоза и ее производные. Крахмал.
Тема 6. Биополимеры
Биополимеры – это хорошо известные вам белки, полисахариды, нуклеиновые кислоты.
Белки – это биополимеры, состоящие из остатков ά – аминокислот. В белках выделяют 4 уровня структур:
Первичную структуру белков можно рассматривать как линейную структуру. Она определяется порядком чередования остатков молекул аминокислот в полипептидной цепи и обуславливает белковую индивидуальность всех живых организмов на земле. Как из букв алфавита можно построить бесконечное количество слов, так и их немногим более чем 20 ά – аминокислот природа создает все многообразие белков. У каждого организма свой неповторимый, как рисунок отпечатков пальцев, набор белковых молекул. На неприятии «чужих» белковых наборов (например, микробных) основана такая защитная реакция организма, как иммунитет и отторжение.
Вторичная структура белка (чаще всего спиралевидная) определяется особенностями скручивания (типом укладки) полипептидных цепей белковых молекул в спираль за счет возникновения водородных связей между группами – NH – и – С = О (рис. 2).Третичная структура белков (клубочковидная или глобулярная) определяется пространственным расположением белковых спиралей за счет возникновения водородных, амидных и дисульфидных связей. Третичная структура в виде определенной пространственной конфигурации с выступами и впадинами, с обращенными наружу функциональными группами обуславливает специфическую биологическую активность белковой молекулы (рис.3).
Некоторые белки, например, гемоглобин, имеют четвертичную структуру. Четвертичная структура относится к макромолекулам, в состав которых входит несколько полипептидных цепей. Эта структура соответствует размещению в пространстве полипептидных цепей, не связанных между собой ковалентными связями.
Полисахариды – это биополимеры, состоящие из остатков моносахаридов.
Представителями полисахаридов являются крахмал и целлюлоза. И опять можно убедиться в том, насколько важное значение имеет пространственное строение для свойств веществ. Ведь в основе столь разительных отличий крахмала и целлюлозы, имеющих общую формулу (С6Н10О5)n, лежит тот факт, что крахмал – ценное питательное вещество, запасной углевод растительной клетки – построен из остатков молекул ά – глюкозы, а целлюлоза – дополнительная механическая оболочка растительной клетки – построена из остатков молекул β – глюкозы.
Полинуклеотиды, или нуклеиновые кислоты, - это биополимеры, состоящие из остатков нуклеотидов.
Подобно молекулам белков, нуклеиновых кислоты также характеризуются последовательностью чередования в их макромолекуле всего четырех видов нуклеотидов – аденинового (А), гуанинового (Г), цитозинового (Ц) (в молекуле любой нуклеиновой кислоты), урацилового (У) – в РНК или тиминового (Т) – в ДНК.
Макромолекулы ДНК представляют собой спираль, состоящую из двух цепей, закрученных вокруг общей оси. Это их вторичная структура. В поддержание ее, как и в белка, важная роль принадлежит водородным связям. Образуются они между азотными основаниями разных цепей молекулы, располагающимися, в отличие от радикалов белковых молекул, не снаружи, а внутри спирали (рис. 4).
Нуклеиновые кислоты – РНК и ДНК выполняют важнейшую роль в хранении и передаче наследственной информации организма, в биосинтезе белка. Изучение биополимеров, особенно белков и нуклеиновых кислот, привело к созданию новых наук – биоорганическая химия, молекулярная биология, генная инженерия, открывающих перед человечеством неисчерпаемые возможности глубокого проникновения в тайны жизни и все более широкого использования постигаемых закономерностей в практических целях.
Зачетное занятие по курсу «Полимеры вокруг нас»
I вариант.
1. Какие вещества называют полимерами?
2. Какая реакция называется реакцией полимеризации? Приведите примеры данной реакции.
3. Дайте определения:
а. структурное звено – это
б. белки – это
в. нуклеиновые кислоты – это
г. пластмассы – это
4. Укажите мономеры:
а. бутадиенового каучука
б. изопренового каучука
5. Определите среднечисловую и средневесовую молекулярные массы системы, содержащей по N молекул с молекулярными массами 100, 200, 300.
II вариант.
1. На какие группы классифицируют по происхождению ВМС?
2. Какая реакция называется реакцией поликонденсации? Приведите примеры данной реакции.
3. Дайте определение:
а. мономер – это
б. полисахариды – это
в. волокна – это
г. степень полимеризации – это
4. Напишите формулы элементарных звеньев в молекулах:
а. бутадиенового каучука
б. изопренового каучука
5. Определите среднечисловую и средневесовую молекулярные массы системы, состоящей из 100 молекул с молекулярной массой m = 100; 20 с m = 500 и 50 молекул с m = 200.
ЗАКЛЮЧЕНИЕ И ВЫВОДЫ
В дипломной работе на тему «Разработка школьного элективного курса «Полимеры вокруг нас»» мы проанализировали учебно – методические комплекты разных авторов. Разработали школьный элективный курс на тему «Полимеры вокруг нас», который рассчитан на 16 часов. Программа элективного курса предусматривает изучение теоретических вопросов, проведение практических работ, экскурсий.
В дипломной работе мы представили школьную лекцию на тему «Волокна», конференцию на тему «Получение и применение наиболее важных синтетических и природных полимеров, практические работы, а также разработали задания текущего контроля.
На базе МОУ ср. школы № 66 мы организовали и провели экскурсию на «Фабрику игрушек», где учащиеся познакомились с технологией производства кукол из поливинилхлоридного материала (поливинилхлоридный пластикат марки «Пластизоль Д – 17 И») и технологией производства пластмассовых игрушек. Экскурсия способствовала развитию познавательного интереса у учащихся.
Выводы:
1. проведен анализ учебно – методических комплектов разных авторов
2. разработан школьный элективный курс на тему «Полимеры вокруг нас».
3. организована и проведена экскурсия на «Фабрику игрушек».
ЛИТЕРАТУРА
1. Габриелян О. С. Химия. 9 класс. – М.: Дрофа, 2002. – 224 с.
2. Габриелян О. С. Химия. 10 класс. – М.: Дрофа, 2005. – 189 с.
3. Габриелян О. С., Лысова Г. Г. Химия. 11 класс. – М.: Дрофа, 2005. – 362 с.
4. Гузей Л. С., Суровцева Р. П., Лысова Г. Г. Химия. 11 класс – М.: Дрофа, 2002. – 240 с.
5. Ермаков Д. С., Муравлянская Ю. Д., Рыбкина Т. И. Элективные курсы по химии для профильного обучения //Химия. Методика преподавания. – 2005. - №5. – стр. 61 – 66.
6. Запольских Г. Ю. Элективный курс «Химия в быту». // Химия в школе. – 2005. - №5. – стр. 25 – 28.
7. Иванова Р. Г., Каверина А. А., Корощенко А. С. Уроки химии в 10 – 11 классах: методическое пособие для учителя. – М.: Просвещение, 2000. – 190 с.
8. Логинова О. Б. От «углубленки» к профильному обучению. //Химия в школе. – 2006. - №2. – стр. 14 – 17.
9. Об основных итогах первого этапа эксперимента по введению профильного обучения. // Химия в школе. – 2005. - №2. – стр. 3 – 5
10. Программы для общеобразовательных учреждений: Химия. 8 – 11 классы: общая, неорганическая, органическая / Министерство образования РФ. – М.: Дрофа, 2001. – 287 с.
11. Сборник инструктивно – методических материалов по организации предпрофильной подготовки учащихся основной школы. Часть 1. / Министерство образования РФ. Министерство образования Пензенской области – Пензенский областной институт повышения квалификации и переподготовки работников образования. – Пенза: 2004. – 79 с.
12. Суматохин С. В. О преподавании химии в условиях модернизации образования в 2003/04 учебном году.// Химия в школе. – 2003. - №5. – стр. 2 – 7.
13. Суматохин С. В. Об использовании учебников и пособий по химии в 2004/05 учебном году. // Химия в школе. – 2004. - №6. – стр. 2 – 6.
14. Тематическое приложение к журналу «Вестник образования»/ Профильное обучение. Часть 1/ Министерство образования и науки РФ. – М.: Просвещение, 2004. - №4 – 139с.
15. Элективные курсы в профильном обучении / Министерство образования РФ – Национальный фонд подготовки кадров. – М.: Вита – Пресс, 2004. – 144 с.