Смекни!
smekni.com

Характеристика алкадієнів (стр. 1 из 2)

АЛКАДІЄНИ

1. Номенклатура. Класифікація

Назви алкадієнів утворюються як похідні від назв відповідних алканів при заміщенні суфікса закінченням -дієн, після якого через дефіс зазначаються локанти, тобто номери атомів карбону, з яких починаються подвійні зв¢язки. При цьому головний ланцюг нумерують таким чином, щоб до нього входили обидва подвійних зв¢язки, а атоми карбону, сполучені подвійними зв¢язками, одержали найменші номери.

Для деяких алкадієнів користуються тривіальною номенклатурою, наприклад:

CH3

½

CH2=CH-CH=CH2 CH2=C-CH=CH2 CH3-CH=CH-CH=CH2

Бутадієн-1,3 2-Метилбутадієн Пентадієн-1,3

(дивініл) (ізопрен) (піперилен)

Залежно від взаємного розміщення подвійних зв¢язків алкадієни поділяються на три групи:

-ізольовані, в яких подвійні зв¢язки в ланцюгу розділені одним чи декількома sp3-гібридизованими атомами карбону:

>C=CH-(CH2)n-CH=C<, де n = 1,2,3…;

Ізольовані алкадієни виявляють хімічні властивості, подібні до звичайних алкенів з тією лише різницею, що у реакцію може вступати не один, а два подвійних зв¢язки незалежно один від одного;

-кумульовані алкадієни, в яких обидва подвійні зв¢язки знаходяться поруч і належать одному атому карбону, наприклад:

СН2=С=СН2

Пропадієн (ален)


Цю групу алкадієнів часто називають аленовими вуглеводнями за першим членом гомологічного ряду; аленові вуглеводні є нестійкими сполуками, вони швидко ізомеризуються в алкіни, тому не мають самостійного значення;

-спряжені алкадієни, в яких подвійні зв¢язки розділені лише одним s-зв¢язком С-С:

>C=CH-CH=C<.

Саме спряжені алкадієни мають найважливіше значення в органічному синтезі.

2. Електронна будова спряжених алкадієнів

Спряжені сполуки з почерговим розміщенням подвійних і одинарних зв¢язків між атомами карбону в ланцюгу відрізняються за хімічними властивостями від інших ненасичених вуглеводнів, що зумовлюється наявністю електронного ефекту спряження.

Спряженняце виникненя єдиної π-електронної хмари внаслідок перекривання негібридизованих рZ-орбіталей атомів карбону, які одночасно утворюють подвійні та одинарні зв¢язки С-С.

Найпростішим спряженим алкадієном є бутадієн-1,3, в якому всі чотири атоми карбону перебувають у sp2-гібридизованому стані і складають s-скелет молекули (рис.1). Причому осі sp2-гібридизованих орбіталей знаходяться на одній площині, а негібридизовані рz-орбіталі кожного атома карбону перпендикулярні до площини s-скелета і паралельні одна відносно одної. Це створює умови їх взаємного перекривання не тільки між атомами С12 і С34, але й частково між С23. Завдяки такому боковому перекриванню чотирьох рz-орбіталей утворюється єдина p-електронна хмара – так зване p,p-спряження зв¢язків, при якому p-електрони вже не належать окремим зв¢язкам, а делокалізуються по спряженій системі в цілому.


Делокалізація електронної густини – це її розподілення по всій спряженій системі, по всіх зв¢язках і атомах.

Рисунок 1 – Утворення спряженої системи в молекулі бутадієну-1,3: жирним пунктиром показане перекривання негібридизованих рz-орбіталей над і під площиною s-скелета

Делокалізація p-електронів супроводжується виділенням енергії. Оскільки спряжені системи мають менший запас енергії, вони виявляють більшу стійкість порівняно з ізольованими алкадієнами. Енергія, що вивільняється за рахунок спряження, називається енергією делокалізації, або енергією спряження; для бутадіну-1,3 вона складає 15кДж/моль.

У результаті утворення спряженої системи довжини зв¢язків частково вирівнюються і стають меншими, ніж довжина одинарного зв¢язку в алканах (0,154нм), але більшими, ніж довжина подвійного зв¢язку в алкенах (0,133нм):

Н Н

½ ½

Н 0,137 нм С 0,146 нм С

С С 0,137 нм Н

½ ½

Н Н

Схематично ефект спряження та вирівнювання довжин зв¢язків зображують стрілками чи крапками:


СН2===СН---СН===СН2

СН2 СН СН СН2

3. Ізомерія алкадієнів

Алкадієни здатні виявляти структурну і просторову (геометричну) ізомерію. Наприклад, для складу С7Н12 ізомери можуть відрізнятися різним положенням як подвійного зв¢язку і бокових радикалів, так і різним просторовим розташуванням вуглецевого ланцюга.

Приклади структурних ізомерів:

СН2=СН-СН-СН=СН–СН3 СН3-С=СН-СН=СН-СН3

½ ½

СН3 СН3

3-Метигексадієн-1,4 2-Метилгексадієн-2,4


Просторові ізомери гептадієну–2,4

4. Фізичні властивості

За звичайних умов тільки ізомери С4Н6 перебувають у газовому стані, ізопрен – рідина, решта дієнових вуглеводнів є рідинами чи твердими речовинами залежно від довжини і розгалуженості вуглецевого скелета. Всі вони малорозчинні у воді, але добре розчиняються в органічних розчинниках.

5. Хімічні властивості спряжених алкадієнів

Для алкадієнів найбільш характерними є реакції електрофільного приєднання АЕ, однак на відміну від алкенів наявність спряженої системи дає деякі особливості в реакціях АЕ. Це зумовлює можливість одержання двох продуктів. Один з них отримується за рахунок приєднання за місцем будь-якого подвійного зв¢язку – такий шлях реакції позначають терміном 1,2-приєднання. А інший продукт утворюється внаслідок приєднання до крайніх атомів С, що складають спряжену систему, – так зване 1,4-приєднання. Переважний напрямок проходження реакції залежить від умов її проведення та природи реагентів.

І Реакції електрофільного приєднання АЕ.

1 Гідрування при використанні паладієвого каталізатора проходить за 1,2-положенням. Якщо гідрування проводять за допомогою водню у момент його виділення (наприклад, внаслідок дії натрієм на спирт), то реакція проходить переважно за 1,4-положенням. На першій стадії утворюються алкени:


2 [Pd]

-------------------- CH3-CH2-CH=CH2

1,2-Приєднання Бутен-1

СН2=СН-СН=СН2---–

Бутадієн-1,3

2 (2С2Н5ОН +2Na)

------------------------CH3-CH=CH-CH3.

1,4-Приєднання Бутен-2

При надлишку водню відбувається повне гідрування з утворенням алканів:

Pt

СН2=СН-СН=СН2+ 2Н2(надл.)--------- CH3-CH2-CH2-CH3.

Бутадієн-1,3 Бутан

2 Галогенування. Залежно від будови дієнового вуглеводню, природи галогену і умов проведення реакцій можуть утворюватися різні продукти. Найчастіше приєднання стехіометричної кількості (1:1) хлору Cl2 приводить до приблизно однакового виходу 1,2- і 1,4-дихлоралкенів, а при бромуванні переважає 1,4-продукт.

1,4-Приєднання

-------------------- CH2-CH=CH-CH2

½ ½

СН2=СН-СН=СН2 + Hal2--- Нal Нal

Дивініл 1,4–Дигалогенбутен–2

1,2-Приєднання

--------------------- CH2-CH-CH=CH2

½ ½

Нal Нal

3,4-Дигалогенбутен–1

При надлишку галогену утворюються тетрагалогеналкани:

СН2=СН-СН=СН2 + 2Br2 (надл.)- H2Br-CHBr-CHBr-CH2Br.

Дивініл 1,2,3,4- Тетрабромбутан

3 Гідрогалогенування. Приєднання галогеноводнів підлягає тим самим закономірностям. Якщо реакція проходить за 1,2-положенням, то діє правило Марковникова:


1,4-Приєднання

------------------------ CH3-CH=CH-CH2Br

1-Бромбутен-2

СН2=СН-СН=СН2 + HBr---

Дивініл 1,2-Приєднання

-------------------------- CH2=CH-CHBr-CH3

3-Бромбутен-1

1,4-Приєднання

------------------ CH3-CH2-CHBr-CH2Br

1,2-Дибромбутан

СН2=СН-СН=СН2 + 2HBr----

Дивініл (надл.) 1,2-Приєднання

-------------------- CH3-CHBr-CHBr-CH3

2,3-Дибромбутан

4 Гіпогалогенування на відміну від попередніх реакцій АЕ проходить переважно у 1,2-положенні згідно із правилом Марковникова:

d- d+ 1,2-

CH2=CH-CH=CH2 + HO-Br ------ CH2Br-CH(OH)-CH=CH2

Дивініл 4- Бромбутен-1-ол-3

ІІ Синхронні (молекулярні) реакції

Прикладом синхронних реакцій, при яких розрив хімічних зв’язків проходить одночасно в обох вихідних речовинах, є синтез Дильса-Альдеранагрівання дієнових вуглеводнів з алкенами чи іншими сполуками, які містять один подвійний зв¢язок >C=C< у ланцюгу. Цей процес широко використовується для одержання шестичленних циклів.

ІІІ Ди- і полімеризація

1Димеризація - це сполучення двох молекул алкадієну,

причому одна з молекул реагує за 1,2-, а інша – за 1,4-положенням, наприклад: