Смекни!
smekni.com

Развитие хроматографии (стр. 2 из 3)

Одним из вариантов газовой хроматографии является газо-адсорбционная хроматография – это метод, в котором неподвижной фазой является твердый адсорбент.

В газовой хроматографии в качестве подвижной фазы (газа-носителя) используется инертный газ: гелий, азот, аргон, значительно реже водород и углекислый газ. Иногда газом-носителем служат пары легколетучих жидкостей.

Газохроматографический процесс обычно осуществляется в специальных приборах, называемых газовыми хроматографами (рис.3). В каждом из них имеется система подачи потока газа-носителя, система подготовки и ввода исследуемой смеси, хроматографическая колонка с системой регулирования ее температуры, анализирующая система (детектор) и система регистрации результатов разделения и анализа (регистратор).

Важное значение в газо-адсорбционной хроматографии имеет температура. Ее роль прежде всего заключается в изменении сорбционного равновесия в системе газ - твердое тело. От правильного подбора температуры колонки зависит, и степень разделения компонентов смеси, и эффективность колонки, и общая скорость анализа. Существует некоторый температурный интервал колонки, в котором хроматографический анализ оптимален. Обычно этот температурный интервал находится в области, близкой к температуре кипения определяемого химического соединения. Когда температуры кипения компонентов смеси сильно различаются между собой, применяют программирование температуры колонки.

Разделение в хроматографической колонке является важнейшей, но предварительной операцией всего процесса газохроматографического анализа. Вышедшие из колонки, как правило, бинарные смеси (газ-носитель – компонент) попадают в детектирующее устройство. Здесь происходит преобразование изменений концентраций компонентов во времени в электрический сигнал, регистрируемый при помощи специальной системы в виде кривой, называемой хроматограммой. Результаты всего опыта в значительной степени зависят от правильного выбора типа детектора, его конструкции. Существует несколько классификаций детекторов. Различают дифференциальные и интегральные детекторы. Дифференциальные детекторы регистрируют мгновенное значение одной из характеристик (концентрации или потока) во времени. Интегральные детекторы суммируют количество вещества за определенный промежуток времени. Также применяют разнообразные по принципу действия, чувствительности и назначению детекторы: термокондуктометрические, ионизационные, спектроскопические, масс-спектрометрические, кулонометрические и многие другие.

Применение газо-адсорбционной хроматографии

Газо-адсорбционная хроматография используется в химической и нефтехимической промышленности для анализа продуктов химического и нефтехимического синтеза, состава фракций нефти, определения чистоты реактивов и содержания ключевых продуктов на разных стадиях технологических процессов и т.п.

Анализ постоянных газов и легких углеводородов, включая изомеры, методом газовой хроматографии занимает 5 – 6 минут. Раньше, на традиционных газоанализаторах, этот анализ длился 5 – 6 часов. Все это привело к тому, что газовая хроматография стала широко использоваться не только в научно-исследовательских институтах и контрольно-измерительных лабораториях, но и вошла в системы комплексной автоматизации промышленных предприятий.

Сегодня газовая хроматография применяется и при поиске нефтяных и газовых месторождений, позволяя определять в отобранных из почв пробах содержание органических веществ, указывающих на близость нефтяных и газовых месторождений.

Газовая хроматография успешно применяется в криминалистике, где с ее помощью устанавливают идентичность образцов пятен крови, бензинов, масел, подделку дорогостоящих пищевых продуктов и т.п. Очень часто газовая хроматография применяется для определения содержания спирта в крови водителей автомобилей. Несколько капель крови из пальца достаточно, чтобы узнать, сколько, когда и какой спиртной напиток он выпил.

Газовая хроматография позволяет получать ценную и уникальную информацию о составе запахов пищевых продуктов, таких, как сыр, кофе, икра, коньяк и др. Иногда информация, получаемая газохроматографическим анализом, нас не радует. Например, нередко в пищевых продуктах обнаруживается излишнее количество пестицидов или фруктовый сок содержит трихлорэтилен, который вопреки запретам использовали для повышения степени извлечения каротина из фруктов и т.д. Но именно эта информация защищает здоровье человека.

Впрочем, нередки случаи, когда полученной информацией люди просто пренебрегают. В первую очередь это относится к курению. Детальный газохроматографический анализ давно установил, что дым сигарет и папирос содержит до 250 различных углеводородов и их производных, из которых около 50 обладают канцерогенным действием. Именно поэтому у курильщиков рак легких встречается в 10 раз чаще, но по-прежнему миллионы людей продолжают отравлять себя, своих коллег и родственников.

Газовая хроматография находит широкое применение в медицине для определения содержания многочисленных лекарственных препаратов, определения уровня жирных кислот, холестерина, стероидов и т.д. в организме больного. Такие анализы дают чрезвычайно важную информацию о состоянии здоровья человека, ходе его болезни, эффективности использования тех или иных лекарств.

Научные исследования в металлургии, микробиологии, биохимии, в разработке средств защиты растений и новых лекарственных препаратов, в создании новых полимеров, строительных материалов и во многих других самых различных областях практической деятельности человека невозможно себе представить без такого мощного аналитического метода, как газовая хроматография.

Газовая хроматография успешно используется для определения содержания полициклических ароматических соединений, опасных для здоровья человека, в воде и в воздухе, уровня бензина в воздухе помещений автозаправочных станций, состава выхлопных газов автомобилей в воздухе и т.д.

Этот метод широко используется как один из основных методов контроля чистоты окружающей среды.

Газовая хроматография занимает важное место в нашей жизни, обеспечивая нас колоссальным объемом информации. В народном хозяйстве и в научно-исследовательских организациях используется более 20 тыс. самых различных газовых хроматографов, которые являются незаменимыми помощниками при решении многих сложных задач, ежедневно возникающих перед исследователями и инженерами.

б)Жидкостная (жидкостно-адсорбционная) хроматография

Жидкостная хроматография представляет собой группу вариантов хроматографии, в которых подвижной фазой является жидкость.

Одним из вариантов жидкостной хроматографии является жидкостно-адсорбционная хроматография – это метод, в котором неподвижной фазой является твердый адсорбент.

Хотя жидкостная хроматография была открыта раньше газовой, она лишь во второй половине ХХ века вступила в период исключительно интенсивного развития. В настоящее время по степени разработки теории хроматографического процесса и техники инструментального оформления, по эффективности и скорости разделения она вряд ли уступает методу газохроматографического разделения. Однако каждый из этих двух основных видов хроматографии имеет свою преимущественную область применения. Если газовая хроматография пригодна главным образом для анализа, разделения и исследования химических веществ с молекулярной массой 500 – 600, то жидкостная хроматография может быть использована для веществ с молекулярной массой от нескольких сот до нескольких миллионов, включая предельно сложные макромолекулы полимеров, белков и нуклеиновых кислот. Вместе с тем противопоставление различных хроматографических методов по своей сути лишено здравого смысла, так как хроматографические методы удачно дополняют друг друга, и к самой задаче конкретного исследования надо подходить по-иному, а именно, какой хроматографический метод позволяет решить ее с большей скоростью, информативностью и с меньшими затратами.

Как и в газовой хроматографии, в современной жидкостной хроматографии применяют детекторы, позволяющие непрерывно фиксировать концентрацию определяемого вещества в потоке жидкости, вытекающей из колонки.

Единого универсального детектора для жидкостной хроматографии не существует. Поэтому в каждом конкретном случае следует подбирать наиболее подходящий детектор. Наибольшее распространение получили ультрафиолетовый, рефрактометрический, микроадсорбционный и транспортный пламенно-ионизационный детекторы.

Спектрометрические детекторы. Детекторы этого типа являются высокочувствительными селективными приборами, позволяющими определять в потоке жидкой фазы весьма малые концентрации веществ. Их показания мало зависят от колебаний температуры и других случайных изменений среды. Одна из важных особенностей спектрометрических детекторов заключается в прозрачности большинства применяющихся в жидкостно-адсорбционной хроматографии растворителей в рабочей области длин волн.

Чаще всего применяют поглощение в УФ, реже в ИК области. В УФ области применяют приборы, работающие в широком диапазоне – от 200 нм до видимой части спектра, либо на определенных длинах волн, чаще всего на 280 и 254 нм. В качестве источников излучения применяются ртутные лампы низкого давления (254 нм), среднего давления (280 нм) и соответствующие фильтры.

Микроадсорбционные детекторы. В основе действия микроадсорбционных детекторов лежит выделение теплоты при адсорбции вещества на адсорбенте, которым заполнена ячейка детектора. Измеряется, однако, не теплота, а температура адсорбента, до которой он нагревается в результате адсорбции.