Важным достоинством активационного анализа является его низкий предел обнаружения. С его помощью может быть обнаружено при благоприятных условиях до 10-13 – 10-15 г вещества. В некоторых специальных случаях удавалось достигнуть ещё более низких пределов обнаружения. Например, с его помощью контролируют чистоту кремния и германия в промышленности полупроводников, обнаруживая содержание примесей до 10-8 – 10-9 %. Такие содержания никаким другим методом, кроме активационного анализа определить невозможно. При получении тяжёлых элементов периодической системы, таких, как менделевий и курчатовий, исследователям удавалось считать почти каждый атом полученного элемента.
Основным недостатком активационного анализа является громоздкость источника нейтронов, а также нередко длительность самого процесса получения результатов.
2.3 Метод изотропного разбавления
Метод изотопного разбавления целесообразно применять для количественного определения близких по свойствам компонентов трудно разделяемых смесей В этом методе необходимо выделять не всё определяемое вещество, а лишь часть его в возможно более чистом состоянии. Метод изотопного разбавления открывает новые возможности в анализе сложных смесей и элементов, близких по своим химико-аналитическим свойствам. Например, при анализе смесей цирконий – гафний или ниобий – тантал можно получить чистый осадок одного из компонентов, но осаждение не будет полным. Если добиться полного осаждения, то полученный осадок будет загрязнен элементом-аналогом. В методе изотопного разбавления проводят неполное осаждение и, используя измерения активности, находят содержание анализируемого элемента с достаточной точностью. Аналогичный приём используется также при анализе различных смесей органических веществ.
2.4 Радиометрическое титрование
При радиометрическом титровании индикатором являются радиоактивные изотопы элементов. Например, при титровании фосфата магнием в анализируемый раствор вводят небольшое количество фосфата, содержащего радиоактивный P*.
Реакции радиометрического титрования должны удовлетворять требованиям, обычно предъявляемым к реакциям титриметрического анализа (скорость и полнота протекания реакции, постоянство состава продукта реакции и т. д.). Очевидным условием применимости реакции в данном методе является также переход продукта реакции из анализируемого раствора в другую фазу, с тем, чтобы устранить помехи при определении активности раствора. Этой второй фазой часто является образующийся осадок. Известны методики, где продукт реакции экстрагируется органическим растворителем. Например, при титровании многих катионов дитизоном в качестве экстрагента применяют хлороформ или тетрахлорид углерода. Применение экстрагента позволяет более точно установить точку эквивалентности, так как в этом случае её определения можно измерять активность обеих фаз.
3. Практическое использование радионуклидов
В наши дни радионуклиды известны у большинства химических элементов. Они имеют много самых разных применений, особенно в химии и биохимии. Дело в том, что химическое поведение радионуклидов какого-либо элемента практически такое же, как и у его стабильных нуклидов. Но ядра радионуклидов в момент распада “посылают сигнал” о своём присутствии. Учёные разработали аппаратуру, позволяющую надёжно регистрировать сигналы от распада буквально единичных атомов. Благодаря этому становится возможным использовать радионуклиды в качестве атомов-меток, так называемых радиоактивных индикаторов.
Например, с помощью фосфора-32 можно установить, как кукуруза усваивает из почвы фосфорное удобрение. В удобрение добавляют очень малое количество радионуклида. Далее, анализируя радиоактивность различных частей растения, можно определить, быстро ли фосфат усваивает корни, с какой скоростью он поступает в листья, стебли или початки и как усвоение удобрения зависит от его химической формы ( в частности, от того, в виде какой именно соли – аммония, калия или кальция – взят фосфат), от способа введения в почву и других факторов. Полученная информация позволила существенно повысить эффективность применения минеральных удобрений.
Аналогичным образом на подопытных животных можно проследить действие лекарств, содержащих радиоактивные индикаторы. Использование радионуклидов позволяет наблюдать и за поведением различных микропримесей в технологических процессах.
Так как для установления природы радионуклидов достаточно буквально единичных атомов, по результатам исследования пряди волос Наполеона, сохранившейся до наших дней, удавалось выяснить, что в конце жизни его организм получал избыток мышьяка. Возможно, именно это и стало причинной болезни и смерти.
А вот чисто химическая проблема, которую помог решить радиоуглерод. При окислении пропионовой кислоты СН3СН2СООН в кислой среде образуются углекислый газ и шавелевая кислота НООС-СООН. Интересно было выяснить, какая именно из двух связей С-С в пропионовой кислоте разрушается при окислении. Для этого синтезировали пропионовую кислоту, содержащую метку 14С в карбоксильной группе. Затем провели окисление и определили активность выделившегося углекислого газа и активность шавеливой кислоты. Измерения показали, что эти значения относятся как 3:7. Следовательно, впропионовой кислоты рвутся обе связи, но с разной вероятностью.
И число подобных примеров очень велико. Однако только использованию меток углерода-14 и трития в органической химии посвящены многотомные издания.
Список использованных источников:
1. Аналитическая химия. Физико-химические методы анализа. Под ред. Е. Н. Дорохова, Г. В. Прохорова, - М.: Высш. шк.., 1991. - 256с.
2. Аналитическая химия. Книга 2. Физико-химические методы анализа. Под ред. В.П. Васильева, - М.: Дрофа, 2004. - 384с.
3. Патяковский В. М. Гигиенические основы питания и экспертизы продовольственных товаров. — Новосибирск: Издательство Новосибирского Университета, 1999. -431с.
4. Курс аналитической химии: Учеб. для с.-х. вузов. - 6-е изд., испр. и доп. - М .: Высш. шк. 1994. - 495с.