Смекни!
smekni.com

Класична теорія будови речовини (стр. 1 из 4)

Вступ

Наука про будову речовини виникла на базі досягнень фізики і хімії кінця ХІХ – початку ХХ століття.

Предметом вивчення курсу «Будова речовини» є експериментальні відомості про будову хімічних часток (атомів, молекул, іонів, радикалів). На основі узагальнення експериментальних даних створена теорія будови мікрочасток і макротіл.

Важливим завданням цієї науки є пояснення електричних і магнітних властивостей речовин, обґрунтування геометрії і симетрії молекул, пояснення природи обертових, коливних і електронних спектрів речовин, а також встановлення будови молекул на основі результатів вивчення молекулярної спектроскопії та рефракції.

Для пояснення будови хімічних часток є дві теорії: класична і квантово-механічна. Вони відрізняються своїми постулатами і глибиною проникнення у фізичну суть внутрішньої будови хімічних часток.

Класична теорія будови речовини

Класична теорія будови речовини була створена у другій половині ХІХ ст. Мікрочасткою в цій теорії є атом, який вважався неподільним. Хімічною часткою є молекула, сукупність яких формує макротіла. Тому предметом вивчення класичної теорії є вивчення будови окремих хімічних часток – молекул.

У хімічну науку поняття атом було введене М.В. Ломоносовим. У 1724 р. в роботі «Елементи математичної хімії» він допускає існування в речовинах двох типів часток: елементів (атомів) і корпускул (молекул). За М.В. Ломоносовим елементи є частиною тіла, яке не складається з будь-яких інших тіл. Корпускули – це скупчення елементів в одну невелику масу.

Велике значення у створенні класичної теорії будови речовини відіграв закон кратних відношень, відкритий Дальтонои у 1803 р. Якщо два елементи утворюють між собою кілька хімічних сполук, то масові кількості одного із елементів, що припадають у цих сполуках на одну і ту саму масову кількість другого елементу, відносяться між собою як прості цілі числа. Наприклад, азот з киснем утворює п’ять оксидів:

Таблиця 1

Формула оксиду Склад, мас% Масова кількість кисню на одну масову частку азоту Співвідношення між кількостями кисню
азот кисень
N2O NO N2O3 NO2 N2O5 63,7 46,7 36,9 30,5 25,9 36,3 53,3 63,1 69,5 74,1 1: 0,57 1: 1,14 1: 1,71 1: 2,28 1: 2,85 1 2 3 4 5

Отже, для кожного елемента є найменша масова кількість, яка вступає в сполуки з іншими елементами. Ця найменша кількість елемента називається атомом, а найменша масова кількість вважається атомною масою.

Поняття про атомну масу було введено Дж. Дальтоном. Оскільки абсолютну масу атома визначити в той час було неможливо, для характеристики маси кожного атома Дж. Дальтон запропонував скористатися відносними атомними масами. За одиницю атомної маси він взяв масу атома найлегшого елемента – водню. Маси атомів інших елементів визначали з даних про хімічний склад їхніх сполук з воднем як відношення масових кількостей елемента на одну масову кількість водню.

Допустивши, що хімічні сполуки мають найпростіший склад, наприклад, вода – НО, Дж. Дальтон вперше визначив атомні маси деяких елементів. Проте ці значення атомних мас фактично співпадали з еквівалентами елементів і мали різні значення в різних сполуках.

Після Дж. Дальтона обчислення багатьох атомних мас здійснив Л. Берземіус, який визначав їх відношенням до атомної маси кисню, маса якого була прийнята за 100.

У 1860 р. Ж. Стас запропонував прийняти атомну масу кисню за 16 (киснева шкала) атомних мас, тоді атомна маса водню дорівнювала 1,008. Киснева шкала набула загального визнання і всі атомні маси елементів визначали за цією шкалою.

У 1960 р. на міжнародному з’їзді фізиків, а в 1961 р. на міжнародному з’їзді хіміків було прийнято сучасну вуглецеву шкалу атомних мас, в основу якої покладено одиницю, що дорівнює 1/12 маси атома ізотопу вуглецю 12С. Отже, атомна масаце число, яке показує у скільки разів маса атома даного елемента більша за 1/12 маси атома вуглецю 12С.

Дальший розвиток вчення про будову речовини був пов’язаний з обгрунтуванням поняття про молекулу, визначенням молекулярних мас і формул речовин. Розв’язання цих проблем відбувалося на основі вивчення хімічних реакцій між газами.

Вивчаючи співвідношення між об’ємом реагуючих газів, французький хімік Гей-Люссак встановив: за одинакових умов об’єми газів, що вступають у реакцію відносин між собою і до об’ємів газів, що утворились в результаті реакції, як невеликі цілі числа.

А. Авогадро розумів, що одних уявлень про атоми не досить для пояснення хімічних реакцій між газами, і ввів поняття про молекулу як найменшу частку речовини, що в свою чергу складається з атомів. Молекули можуть складатися із атомів одного елемента (проста речовина) і різних елементів (складна речовина).

У 1811 р. А. Авогадро сформулював закон: у рівних обємах будь-яких газів за одинакових умов міститься одинакове число молекул.

Лише в середині ХІХ ст. завдяки працям С. Канніцаро закон Авогадро набув широкого визнання. На основі закону Авогадро в 1860 р. С. Канніцаро запропонував метод визначення молекулярних мас. Крім того, закон Авогадро дав змогу встановити склад молекул простих газів. На основі закону Авогадро був встановлений склад деяких складних речовин. Закон Авогадро обгрунтував поняття про молекулу, дав змогу встановити склад молекул і визначати основну їх характеристику – молекулярну масу.

Атомно-молекулярне вчення мало дуже велике значення для розвитку хімії. На його основі остаточно визначено поняття «атом» і «молекула», встановлено різницю між атомними, молекулярними і еквівалентними масами, введено для користування єдині хімічні формули.

Атомце найменша частинка хімічного елемента, що зберігає його типові властивості.

З погляду атомно-молекулярного вчення хімічним елементом називають сукупність атомів, що мають одинаковий заряд ядра і характеризуються певною атомною масою.

Молекулою називають найменшу частину речовини, яка здатна самостійно існувати і має всі хімічні властивості речовини.

Визначення поняття атома і молекули дало змогу встановити відмінність між простою речовиною, або хімічною сполукою.

Простою речовиною називають індивідуальну речовину, молекули якої складаються з атомів одного елемента.

Хімічною сполукою (складною речовиною) називають індивідуальну речовину, молекули якої складаються з двох або більше елементів.

Таким чином, елементарною часткою в класичній теорії будови речовини є атом. А атоми в свою чергу формують хімічні частки – молекули. Тому важливим питанням у класичній теорії будови речовини є питання про будову молекул. На час створення класичної теорії відомостей про заряджені частки (іони) і про радикали в хімії не було і атом вважався неподільним.

Перша спроба створення теорії будови молекул відноситься до початку ХІХ ст., коли Бергман (Швеція) і Бертоле (Франція) (1900 р.) запропонували ідею про те, що атоми в молекули об’єднуються силами всесвітнього тяжіння. Але виявилось, по-перше, що хімічна спорідненістьміж атомами не пропорційна їх масам. Наприклад, молекула НgO – не стійка, а молекула Н2О – стійка, хоча маса атома ртуті у 200 разів більша за масу водню. По-друге, сили всесвітнього тяжіння діють на будь-яких відстанях, в той же час вплив хімічних сил проявляється тільки на дуже малих віддалях (0,5–3Å). По-третє, сили всесвітнього тяжіння ненасичені, тіла можуть утворювати величезні накопичення по масі, в той час як число атомів, що об’єднуються в молекули, невелика, тобто хімічні сили насичені. Наприклад, до молекули Н2 третій атом водню не приєднується. Крім того, хімічні сили, що діють між атомами, на відміну від сил всевітнього тяжіння володіють певним напрямком у просторі. Тому теорія будови молекул запропонована Бергменом-Бертоле виявилась нежиттєздатною.

На зміну теорії всесвітнього тяжіння в хімії на початку ХІХ ст. прийшла теорія електростатичного дуалізму Берцеліуса – електрохімічна теорія Берцеліуса (1812 р.). Берцеліус вважав атоми полярними, причому електровід’ємні атоми мають надлишок від’ємного заряду на відповідному полюсі, а електрододатні – надлишок додатнього заряду. При сполученні атоми притягуються один до одного протилежно зарядженими полюсами. При цьому проходить часткова нейтралізація зарядів, що є причиною виділення тепла і світла при хімічних реакціях. Нейтралізація зарядів при реакції не повна і залишкові заряди утримували атоми в бінарних сполуках, а також дозволяють утворювати більш складні молекули. Наприклад:

Са + О ® СаО;

С + 2О ® СО2;

СаО + СО2 ® СаСО3.

Основна і найважливіша заслуга електрохімічної теорії – це науковий підхід до пояснення природи сил хімічного зв’язку у молекулах. Однак ця теорія не могла пояснити реакції заміщення в органічній хімії (досліди Дюма). Наприклад, утворення хлорооцтової кислоти, заміна електрододатнього водню на електровід’ємний хлор. Але це явище відіграло не тільки «руйнівну» роль, але і привело до дуже важливого для хімії поняття – валентності.

В 40-х рр. ХІХ ст. Дюма і Жерар запропонували теорію типів. Згідно цієї теорії властивості речовин залежать від аналогії в складі молекул і майже не залежать від природи атомів. Вперше поняття про валентність було введено в хімію англійським вченим Франклендом в 1853 р. Під валентністю або атомністю даного елемента він розумів число атомів іншого елемента, які приєднував або заміщував даний атом у хімічних сполуках. Якщо прийняти валентність водню за одиницю, то валентності інших атомів визначаються числом атомів водню, що з’єднується з атомом даного елементу.