Смекни!
smekni.com

Влияние концентрации аниона хлора на адсорбцию органического соединения реакционной серии оксиазометина на цинковом электроде (стр. 2 из 3)

1.7 Кислотная коррозии

Ингибиторами кислотной коррозии называют вещества, наличие которых в кислоте или кислой среде в небольших количествах приводит к значительному торможению или почти полному подавлению коррозии. Ингибиторы вводят обычно в небольших количествах, не превышающих 5 г/л. Для кислых сред в качестве ингибиторов используются преимущественно органические соединения и в меньшей мере – неорганические. Широкое применение имеют смеси органических веществ, представляющих собой в большинстве случаев отходы химических производств, в той или иной степени модифицированные для придания им необходимых свойств.(5)

Наиболее эффективными ингибиторами кислотной коррозии металлов в области активного состояния являются органические ПАВ, имеющие в своём составе азот, серу, кислород, фосфор, а также непредельные соединения. (3)

1.8 Защита от коррозии в органических электропроводящих средах

Выявление зависимости эффективности ингибитора от химической структуры органического соединения является важнейшей научно-технической задачей. При изучении реакционной способности отдельных классов соединений, обладающих единым центральным реакционном ядром, свойства конкретного соединения можно прогнозировать, исходя из свединий о других соединениях этого класса.

Если в качестве стандартного берут соединение, описываемое в общем виде X-Y-H, то по отношению к нему следует рассматривать соединение X-Y-R, отличающееся радикалом R. Если эти вещества не вызывают блокировки поверхности, а изменяет только энергию активации реакции коррозии, то справедливо уравнение:

lgγR = γH + ρσ,

где γR и γH – коэффициенты торможения реакции коррозии соответственно каждым из соединений; ρ – реакционный параметр, принятый за единицу для стандартного соединения; σ – константа.

Если реализуется оба механизма действия ингибитора – блокировка поверхности и снижения энергии активации, то применяют уравнение:

lg (γR / γH) = ρσ – lg ( ΘR / ΘH ),

где Θ – степень заполнения поверхности каждым из ингибиторов. (7)

Закономерности коррозионных процессов в неводных (органических) средах определяются физико-химическими свойствами растворителей. (1')

Коррозионная стойкость цветных металлов.

Алюминий и его сплавы. Стандартный электродный потенциал алюминия -1.66 В. На основании этой величины можно предположить, что алюминий весьма активный металл, однако практически он обладает достаточно высокой стойкостью во многих агрессивных средах, так как на поверхности металла образуется защитная оксидная плёнка. Такая пленка появляется почти мгновенно при соприкосновении свежего среза металла с воздухом, но рост её продолжается медленно. Толщина плёнки зависит от многих условий : для алюминия, хранящегося в помещении, она составляет 0,01-0,02 мкм, при действии сухого кислорода от 0,02-0,04 мкм, а при термической обработке металлов доходит до 0,1 мкм. В зависимости от окружающих условий поверхностная плёнка состоит из аморфного или кристаллического оксида алюминия либо из гидроксида алюминия. Она обладает хорошим сцеплением и удовлетворяет условию сплошности. Таким образом, алюминий устойчив во всех средах, где на его поверхности может существовать защитная плёнка, и нестоек там, где эта плёнка разрушается, либо нет условий для её образования. Защитная плёнка на алюминии может образовываться даже при отсутствии окислителей; вода, водные растворы нейтральных солей пассивируют поверхность алюминия.

Коррозионная стойкость алюминия определяется рядом факторов – это природа агрессивной среды, её концентрация, температура, а также влиянием этих факторов на формирование защитной плёнки на поверхности металла.

В отдельных случаях алюминий проявляет исключительную стойкость в концентрированных кислотах, например, в азотной кислоте высоких концентраций стойкость алюминия выше, чем у нержавеющих сталей.

Наиболее опасными для алюминия являются растворы серной кислоты средних концентраций. В концентрированной кислоте и в высокопроцентном олеуме при 200°С алюминий достаточно устойчив. Снижение скорости коррозии в кислотах более высокой концентрации связывают с уменьшением концентрации водородных ионов, с затрудненностью диффузии продуктов реакции с поверхности металла, с возможным пассивированием. Стойкость алюминия в растворах кислот увеличивается с повышением его чистоты.

Галогеноводородные кислоты интенсивно действуют на алюминий, степень их агрессивности снижается согласно следующему ряду: НF - НCL – НBr – НI. В фосфорных и уксусных кислотах при комнатной температуре алюминий достаточно устойчив. Муравьиная, щавелевая, хлорорганические кислоты разрушают алюминий.

Серьёзные разрушения алюминия вызывают хлорсодержащие органические растворители, даже безводные, например CCL4, разрушают алюминий:

2Al + 6CCl4 ↔ 3C2Cl6 + 2AlCl3

Алюминиевые сплавы обладают меньшей коррозионной стойкостью, чем алюминий.

Контакт алюминия и его сплавов с другими металлами может вызвать интенсивную коррозию, особенно в растворах электролитов или в очень влажной атмосфере, поскольку большинство металлов является катодами в отношении к алюминию. Особенно опасен для алюминия и его сплавов контакт с медью, сплавами меди и нержавеющих сталями.

Цинк . Нормальный электродный потенциал цинка – 0,76В. В качестве конструкционного материала цинк не применяется. А используется для защиты от коррозии железоуглеродных сплавов. При нагревании в воде цинк устойчив, исключая интервал температур 50-80°С , когда на поверхности металла образуется рыхлая плёнка Zn(OH)2, которая отслаивается от поверхности. В растворах солей с более электроотрицательным катионом цинка устойчив. Присутствие в растворах более положительного катиона приводит к разрушению цинка:

Zn + FeSO4 ↔ Fe + ZnSO4

В растворах щелочей (рН>12) и кислот цинк неустойчив, но он обладает высокой стойкостью в нейтральных и слабощелочных средах в связи с образованием на поверхности Zn(OН)2.


2 Экспериментальная часть

2.1 Объекты исследования

В качестве ингибиторов коррозии цинка в 1 М растворе H2SO4 исследовали РС оксиазометина.

Изучали влияние адсорбции не замещённого оксиазометина хлорид анионов, которые вводили в ингибированный раствор H2SO4 в виде КCL на фоне постоянной (10 моль/л)

Концентрации органического оединения варьировали в пределах от 0.25 до 0.0625 моль/л.

Приготовление рабочих растворов.

Для проведения опытов использовали 1М водные растворы H2SO4.

2.2 Подготовка металлических образцов к импедансным измерениям

Использовали нарезанный листовой цинк, размеры которого замеряли штангенциркулем. Электроды полировали стеклянным порошком до зеркального блеска, промывали дистиллированной водой, обезжиривали спиртом, осушали фильтровальной бумагой и использовали для определения адсорбции органических соединений.


2.3 Методика емкостных измерений

Исследования проводили в 3-х электродной ячейке при постоянной (22°С) температуре при помощи моста переменного тока Р-5021.

Вспомогательным электродом в цепи измерения ёмкости служил платиновый электрод цилиндрической формы. Раствор H2SO4, залитый в ячейку, в течении 15 минут барбатировали электролитически очищенным водородом. Измерения проводили при частотах 1 кГц и 20 кГц при стационарном потенциале относительно хлоридсеребряного электрода сравнения при последовательном соединении ёмкости и сопротивления.

Измеренные значения ёмкости пересчитывали на параллельную схему по формуле

Cп / S = Cи / 1 + ( Rи- Rо )² w² C²и(1)

По формуле (2) рассчитывали степень заполнения поверхности электрода добавками Θ :

Θ = ( Со – Си ) / Со (2)

где Со, Си – ёмкости двойного электрического слоя, соответственно, в растворе фона и в присутствии ингибитора.

СредаС(КCL) м/л Сп/SμФ/см² Θ (H2SO4)Фон 1 КΘ (H2SO4) Θ (ПАВ)Фон2 КΘ (ПАВ)
1М H2SO4Фон 1 - 14,16 - - -
H2SO4 + ПАВ(СН3)Фон 2 4,85 0,657 2,91 - -
0,25 3,76 0,734 3,76 0,225 1,29
0,125 3,10 0,781 4,57 0,361 1,56
0,06 2,45 0,827 5,78 0,495 1,98
0,03 2,35 0,834 6,02 0,515 2,06
1 кГц 20 кГц
С μФ G mS С μФ G mS Сп/μ Сп/SμФ/см²
1М H2SO4Фон 1 2,7; 2,3;2,22 21; 23; 22 0,38 208 1,77 14,16
H2SO4 + ПАВ (СН3)Фон 2 0,74 9 0,25 92 0,61 4,8
С(КCL) м/л 0,68; 0,62; 0,58 6; 6,6 0,26 94,4 0,47 3,76
0,25
0,125 0,56; 0,51; 0,49 5 0,26 99 0,387 3,10
0,06 0,44; 0,39; 0,38 4 0,24 99 0,305 2,45
0,03 0,4; 0,38; 0,37 4 0,25 100 0,293 2,35

Список