Результаты статистической обработки линейной регрессии:
y = a + bx
Таблица 5
Обработка результатов | параметры | ||||
Коэфф. корреляции | а+a | b+b | Sa | Sb | |
По формулам | 0,04+0,07 | 1,3+0,1 | 0,0323 | 0,01478 | |
Microsoft Excel | 0,9961 | 0,04 | 1,3 | ||
Sigma Plot 2000 | 0,9961 | 0,04+0,1 | 1,3+0,5 | 0,0323 | 0,0139 |
Коэффициент корреляции составляет 0,9961, что свидетельствует о том, что зависимость между x и y с достаточной вероятностью может быть описана в параметрах линейной регрессии.
Были доведены до постоянной массы бурой уголь и сапропели (белгородский и краснодарский). По методике, проведенной в соответствии с ГОСТами: ГОСТ 11022-90, ГОСТ 11306-83, была определена зольность бурого угля и сапропелей и влажность (определена в соответствии с ГОСТом 11305-83. Данные представлены в таблице 6.
Зольность и влажность бурого угля и сапропелей Таблица 6
Влажность, % | Зольность, % | Органическое вещество, % | |
Бурый уголь | 6,9±0,2 | 0,1793±0,0009 | 99,8±0,2 |
Сапропель (Белгород) | 3,9±0,1 | 82,8±0,0 | 13,2±0,1 |
Сапропель (Краснодар) | 0,023±0,004 | 84,0±0,2 | 16,0±0,2 |
Проводили анализ исходных образцов (бурого угля и сапропелей) на содержание углерода, азота и водорода по методу органического анализа. Результаты анализа представлены в таблице 7.
Элементный анализ образцов Таблица 7
Сорбент | Исходная навеска, масс. % daf | ОМ, масс. % | ||||||
С | Н | N | С | H | N | O+S | H/C | |
Бурый уголь | 50,0 | 4,0 | 1,4 | 66,4 | 0,6 | 1,9 | 31,1 | 0,01 |
Сапропель (Белгород) | 4,6 | 5,1 | 4,0 | 64,7 | 5,1 | 4,0 | 26,2 | 0,08 |
Сапропель (Краснодар) | 3,9 | 0,7 | 0,3 | 28,5 | 0,6 | 1,8 | 69,1 | 0,02 |
Методика выделение гуминовых кислот описана в экспериментальной части в пункте [2.3.]. Выход ГК представлен в таблице 9:
Выход гуминовых кислот Таблица 9
Название образца | Выход, мас.% ОМ |
Гуминовые кислоты выделенные из сапропеля (Белгород) | 11,2 |
Гуминовые кислоты выделенные из бурого угля | 54,9 |
По гостовским условиям был произведен элементный анализ на определение содержания углерода, азота и водорода гуминовых кислот, выделенных из сапропеля и бурого угля.
Элементный анализ образцов Таблиуа 9.1
Сорбент | Исходная навеска, масс. % daf | ОМ, масс. % | ||||||
С | H | N | С | H | N | O+S | H/C | |
ГК из бурого угля | 38,4 | 3,4 | 1,0 | - | - | - | - | - |
ГК из сапропеля (белг.) | 42,7 | 3,4 | 2,6 | 64,7 | 5,1 | 4,0 | 26,2 | 0,08 |
Исходя из результатов гуминовые кислоты, выделенные из бурого угля и белгородского сапропеля близки по элементному анализу.
Проведен анализ снятия данных по ИК-спектроскопии гуминовых кислот, выделенных из бурого угля и белгородского сапропеля.
Рисунок 2.ИК-спектр гуминовых кислот, выделенных их сапропеля
Рисунок 3.ИК-спектр гуминовых кислот, выделенных из бурого угля
Соотношение интенсивностей полос для гуминовых кислот Таблица 10
Образец | ICOOH (1700) | IOH(3400) | ICOOH/ IOH |
Гуминовые кислоты из сапропеля (Белгород) | 85,297 | 78,142 | 1,0916 |
Гуминовые кислоты из бурых углей | 86,584 | 85,444 | 1,0133 |
Из приведенных результатов видно, что отношение интенсивностей карбоксильных и гидроксильных групп гуминовых кислот, выделенных из белгородского сапропеля и бурого угля имеют близкие значения.
В качестве природных сорбентов были использованы бурый уголь и белгородский сапропель. Изучение зависимости изменения рН и концентрации раствора меди от времени проводили при контакте навеске сорбента (m=0,5;2 г сорбента) с концентрацией меди 1 мг/мл (Vр-ра=50;250 мл исходного раствора).
Результаты экспериментов представлены в таблицах и в виде кинетических кривых.
На основании полученных данных были рассчитаны величины сорбируемости меди (по формуле 1) в статических условиях на природных сорбентах.
Данные для построения кинетических кривых на буром угле при соотношение объема раствора к массе сорбента 250/2
Таблица 11
№ | Время, мин | pH | Оптическая плотность, A | Концентрация меди, С, мг/мл | Сорбируемость,Г, мгэкв/г |
1. | 0 | 4,923 | 0,305 | 1,0549 | - |
2. | 5 | 4,507 | 0,230 | 0,7575 | 0,9473 |
3. | 10 | 4,263 | 0,167 | 0,5080 | 1,9219 |
4. | 15 | 4,090 | 0,123 | 0,3335 | 2,6035 |
5. | 20 | 4,020 | 0,097 | 0,2305 | 3,0059 |
6. | 25 | 4,010 | 0,084 | 0,1790 | 3,2070 |
7. | 60 | 4,010 | 0,078 | 0,1550 | 3,3008 |
Рисунок 4.Кинетическая кривая рН раствора меди на буром угле при соотношении объема раствора к массе сорбента 250/2
Рисунок 5.Кинетическая кривая сорбции меди на буром угле при соотношении объема раствора к массе сорбента 250/2
Данные для построения кинетических кривых на белгородском сапропеле при соотношении объема раствора к массе сорбента 250/0,5
Таблица 12
№ | Время, мин | pH | Оптическая плотность, A | Концентрация меди, С, мг/мл | Сорбируемость, Г, мгэкв/г |
1. | 0 | 5,2300 | 0,407 | 1,0423 | - |
2. | 5 | 5,2012 | 0,278 | 0,9520 | 0,7500 |
3. | 10 | 5,1896 | 0,271 | 0,9240 | 1,1875 |
4. | 15 | 5,1835 | 0,268 | 0,9080 | 1,4375 |
5. | 20 | 5,1807 | 0,266 | 0,9005 | 1,5547 |
6. | 25 | 5,1803 | 0,265 | 0,8965 | 1,6172 |
7, | 30 | 5,1803 | 0,265 | 0,8965 | 1,6172 |
8. | 60 | 5,1805 | 0,265 | 0,8965 | 1,6172 |
Рисунок 6.Кинетическая кривая рН раствора меди на белгородском сапропеле при соотношении объема раствора к массе сорбента250/0,5
Рисунок 7.Кинетическая кривая сорбции меди на белгородском сапропеле при соотношении объема раствора к массе сорбента 250/0,5
Данные для построения кинетических кривых на белгородском сапропеле при соотношении объема раствора к массе сорбента 250/2
Таблица 13
№ | Время, мин | pH | Оптическая плотность, A | Концентрация меди, С, мг/мл | Сорбируемость,Г, мгэкв/г |
1. | 0 | 4,920 | 0,322 | 1,1222 | - |
2. | 5 | 5,290 | 0,281 | 0,9597 | 0,1574 |
3. | 10 | 5,270 | 0,273 | 0,9240 | 0,2969 |
4. | 15 | 5,260 | 0,265 | 0,8965 | 0,4043 |
5. | 20 | 5,280 | 0,258 | 0,8725 | 0,4980 |
6. | 25 | 5,390 | 0,254 | 0,8527 | 0,5754 |
7. | 30 | 5,360 | 0,251 | 0,8408 | 0,6219 |
8. | 60 | 5,150 | 0,250 | 0,8370 | 0,6367 |
Рисунок 8. Кинетическая кривая рН раствора меди на белгородском сапропеле при соотношении объема рствора к массе сорбента 250/2
Рисунок 9. Кинетическая кривая сорбции меди на белгородском сапропеле при соотношении объема раствора к массе сорбента 250/2
На основе приведенных графиков можно сделать вывод о то, что рН уменьшается, сдвигается в кислую област. Во всех случаях равновесие устанавливается быстро за 20 – 30 минут. А сорбируемость увеличивается и достигает наибольшего значения также за 20 - 30 минут.
В качестве природных сорбентов использовали бурый уголь, белгородский и краснодарский сапропели, гуминовые кислоты (ГК), выделенные из бурого угля и белгородского сапропеля, остатки бурого угля после экстракции ГК и остатки белгородского сапропеля после экстракции ГК.
Изучение зависимости изменения сорбции меди от концентрации проводили при контакте навеске сорбентов (m= 0,5 г природного сорбента) с концентрацией раствора меди 2 мг/мл (V=50 мл). Результаты экспериментов представлены в таблицахи в виде кинетических кривых.
Для анализа использовали следующие сорбенты: бурый уголь, белгородский и краснодарский сапропели и минеральную породу на основе горелой породы при соотношении объема раствора к массе навески 50/0,5.
Данные для сорбции меди на буром угле Таблица 14
№ п.п. | C0, мг/мл | Vал, мл | А | Сгр., мг/мл | Сравн., мг/мл | Г, мгэкв/г |
1. | 0,1076 | 20 | 0,058 | 0,0151 | 0,0378 | 0,2181 |
2. | 0,3229 | 20 | 0,122 | 0,0659 | 0,1648 | 0,4941 |
3. | 0,5382 | 10 | 0,113 | 0,0587 | 0,2935 | 0,7647 |
4. | 0,7535 | 10 | 0,148 | 0,0865 | 0,4325 | 1,0031 |
5. | 1,0764 | 5 | 0,125 | 0,0683 | 0,6830 | 1,2294 |
6. | 2,1529 | 5 | 0,253 | 0,1697 | 1,6970 | 1,4247 |
Данные для сорбции меди на белгородском сапропеле Таблица 15