Смекни!
smekni.com

Получение уксусной кислоты (стр. 4 из 9)

Таким образом, двойная связь представляет собой сочетание σ- и π-связей. Последняя обладает максимальной прочностью, когда молекула имеет пленарную (плоскостную) конфигурацию. Для поворота в молекуле этилена одной группы СН2 относительно другой группы СН2 вокруг оси С - С необходимо приложить энергию, достаточную, чтобы разорвать π-связь и вернуть два электрона на отдельные p-орбитали. Энергия молекулярных столкновений при обычной температуре для этого недостаточна и потому вокруг двойной связи нет свободного вращения[16, с. 31].

Рис.2 Схематическое изображение строения молекулы этилена

Длина олефиновой связи (σ + π-связь) между двумя ненасыщенными углеродами в алкенах меньше, чем длина простой σ-связи в насыщенных углеводородах (0,154 нм), и составляет 0,134 нм. Это понятно: чем больше концентрируется электронное облако между ядрами, тем более сильно они стягиваются.

При сравнении структурных и энергетических параметров молекул алканов и алкенов видно, что двойная связь значительно короче и прочнее ординарной связи. Однако энергия двойной связи меньше, чем энергия двух ординарных, на 92,1 кДж/моль. Поэтому двойная связь легко переходит в две ординарные σ-связи путем присоединения по месту двойной связи двух атомов или атомных групп.

В реакциях присоединения двойная связь обычно выступает как донор электронов. Поэтому для олефинов характерна реакция электрофильного присоединения. [16, с.79]

1.3.2.2Электронная структура ацетальдегида

Большинство реакций ацетальдегида обусловлено присутствием активной карбонильной группы. Двойная связь карбонильной группы сходна по физической природе с двойной связью между двумя углеродными атомами (σ-связь + π-связь). Однако в то время как Ес=с < 2Ес-с, энергия связи С=О (749,4 кДж/моль) больше, чем энергия двух простых С-О-связей (2• 358 кДж/моль). С другой стороны, кислород является более электроотрицательным элементом, чем углерод, и потому электронная плотность вблизи атома кислорода больше, чем вблизи атома углерода. Дипольный момент карбонильной группы - около 9•10-30 Кл/м (2,7 D). Благодаря такой поляризации углеродный атом карбонильной группы обладает электрофильными свойствами и способен реагировать с нуклеофильными реагентами. Соответственно атом кислорода является нуклеофильным. В реакциях присоединения молекулы всегда направляется к углеродному атому карбонильной группы, в то время как ее положительно поляризованная часть направляется к кислородному атому. [16, с. 166]

Рис. 3 Схематическое изображение строения молекулы ацетальдегида

1.3.2.3Электронная структура кислорода

Кислород О имеет электронную конфигурацию невозбужденного атома

Is-2s22p4:

В молекуле О2 на 8 связывающих электронов приходится 4 разрыхляющих, поэтому порядок связи в ней равен двум. Учитывая парамагнетизм и порядок связи, строение молекулы О2 можно передать следующими структурными формулами:


Тремя точками обозначены связи, обусловленные двумя πсв- и одним πразр-электроном, что отвечает порядку связи 0,5. Во второй формуле непарные точки означают πразр-электроны. При возбуждении молекула О2 становится диамагнитной. Этому состоянию отвечает структурная формула :О=О:

Вследствие кратности связи межатомное расстояние в О2 (1,207 А ) меньше длины одинарной связи 0—0(1,48 А). По этой же причине молекула О2 весьма устойчива, ее энергия диссоциации равна 494 кдж/моль, в то время как энергия одинарной связи О—О всего 210 кдж/моль. Диссоциация молекул О2 на атомы становится заметной лишь при 2000°С. Диссоциация молекулы О2, на атомы (фотолиз О2) имеет место также при поглощении ультрафиолетового излучения с длиной волны 190 нм (1900 А).[17, с. 337]

1.3.2.4Электронная структура катализатора PdCl2

В процессе окисления этилена в ацетальдегид как правило применяется катализатор PdCl2, в качестве промотера применяется CuCl2, либо FeCl3.

Структурной единицей соединений Pd (II) является квадрат. Кристаллы PdCl2 (рис. 4) имеют цепное строение с квадратной структурной единицей PdCl4 [17, с. 649]:

Рис. 4. Структура PdCl2

1.3.3 Химические свойства реагентов и продуктов реакции

1.3.3.1 Химические свойства этилена

1. Гидрирование. Алкены непосредственно молекулярный водород не присоединяют. Эту реакцию можно осуществить только в присутствии гетерогенных (Pd, Pt, Ni) или гомогенных (например, хлортристрифенилфосфин родия RhCl(Ph3P)3) катализаторов. Наиболее часто проводят каталитическое гидрирование на гетерогенных катализаторах:

СН2=СН2 + Н2

СН3 – СН3; ΔН = – 137.3 кДж/моль.

2. Галогенирование. Олефины легко присоединяют галогены:

СН2=СН2 + Вг2

СН2Вг – СН2Вг.

Скорость реакции зависит от природы галогена и строения олефина. Фтор реагирует с воспламенением, иод - медленно на солнечном свету.[16, с.79]

Присоединение происходит по ионному электрофильному механизму. Молекула галогена атакует двойную связь, захватывая электроны и образуя так называемый π-комплекс. Затем отделяется отрицательный ион галогена. К возникающему карбениевому или бромониевому катиону (присоединяется отрицательный ион галогена.

3. Гидрогалогенирование. Олефины присоединяют все галогеноводороды:

CH2 = СН2 + НС1

СН2Сl-СН3.

Наиболее легко реагирует йодистый водород. Фтористый водород часто (особенно в присутствии влаги) присоединяется с одновременной полимеризацией олефина. С хорошими выходами алкилфториды получаются при действии на алкены растворов HF в третичных аминах (триэтиламин, пиридин) и тетрагидрофуране при О°С. Присоединение хлористого водорода требует обычно нагревания или присутствия катализаторов.

Механизм электрофильного присоединения галогеноводородов двухступенчатый, как и механизм присоединения галогенов, однако π-комплексы в этом случае, вероятно, не образуются: реакции идут через карбениевые ионы и, следовательно, должны быть нестереоспецифичными. Наблюдаемая в ряде случаев стереоспецифичность объясняется тем, что в реакции участвуют не свободные карбениевые ионы, а ионные пары карбениевый ион - анион.[16, с. 81]

4. Гипогалогенирование. Присоединение к олефинам гипогалогенитных кислот и их эфиров осуществляется согласно следующей реакции:

CH2 = СН2 + НОС1

СН2Сl-СН2ОН.

5. Гидратация. В присутствии катализаторов олефины присоединяют воду, образуя спирты [16, с. 83]:

СН2=СН2 + НОН

CH3-CH2OH

6. Окисление. Олефины окисляются кислородом воздуха или другими окислителями. Направление окисления зависит от условий реакции и выбора окислителя.

а) Кислородом воздуха в присутствии серебряного катализатора олефины окисляются до органических оксидов:

2СН2=СН2 + О2

CH2–CH2

О

б) Разбавленный раствор перманганата калия (реакция Вагнера) или пероксид водорода в присутствии катализаторов (CrO3, OsO4 и др.) с олефинами образуют гликоли. По месту двойной связи присоединяются два гидроксила:


3СН2=СН2 + 2KMnO4 + H2O

3CH2OH–CH2OH +2MnO2 +2KOH

СН2=СН2 + H2O2

CH2OH–CH2OH

в) При действии концентрированных растворов окислителей (перманганат калия, хромовая кислота, азотная кислота) молекула этилена разрывается по месту двойной связи, образуя муравьиную кислоту:

CH2 = СН2

2СНООН.

д) Прои реакции озонолиза, озон присоединяется по месту двойной связи, образуя нестойкое соединение, озонид, при обработке водой из него образуется пероксид водорода и муравьиный альдегид:

CH2 = СН2 + О3

2CH2O +H2O2

7. Полимеризация. Одним из наиболее важных для современной техники превращений олефинов является реакция полимеризации. Полимеризация олефинов может быть вызвана нагреванием, сверхвысоким давлением, облучением, действием свободных радикалов или катализаторов [16, с. 87].

n CH2=CH2

[-CH2-CH2 -]n

1.3.3.2 Химические свойства ацетальдегида

1. Гидрирование. Присоединение водорода к происходит в присутствии катализаторов гидрирования (Ni, Со, Си, Pt, Pd и др.). При этом он переходит в этиловый спирт: