Смекни!
smekni.com

Металлические кластеры (стр. 2 из 2)

Во-вторых, необходимо установление закономерностей перестройки (и надстройки) структур кластеров разного типа. При этом надо учитывать как привычные энергетические факторы, так и позже вошедшие в сознание химиков квантовомеханические запреты и разрешения; главное же, искомые закономерности должны охватывать не только и не столько "статику", сколько "динамику" — кинетику и механизмы перестройки структур. Одной из первых работ в этом направлении является анализ переходов между структурами С6 с позиций теории конечных групп. Вообще, кажется необходимым привлечение серьезных математических сил и нетрадиционных для химии подходов, в особенности топологических, для решения этой проблематики.

Кроме этих собственно "кластерных" проблем, есть и еще одна — общехимическая,, постановке которой и посвящена эта брошюра: какое же место занимают кластеры в химии? Место это определяется переходным характером кластеров, переходным в нескольких отношениях.

В химии кластеры представляют собой не единичный объект, а совокупность родственных объектов, рядов, расположенных между единицами и множествами, далее — между определенными и неопределенными соединениями и между однородными и неоднородными системами. Наконец, в зависимости от степени стабилизации кластеры занимают то или иное место между обычными химическими индивидами и состояниями, столь непрочными и кратковременными, что они оказываются лишь мгновенными положениями химического процесса.

Кластер не являющийся молекулой

Здесь уместно обсудить вопрос, который мы обошли вначале: отличается ли кластер от молекулы? Положительный ответ очевиден, иначе химия удовлетворилась бы только одним понятием, более старым. Более корректно поставленный и далеко ведущий вопрос звучит так: не является ли молекула частным случаем кластера? Здесь ответ неоднозначен, но если ограничиться многоядерными молекулами, включающими одинаковые или близкие атомы, то такие молекулы можно рассматривать как стабилизированные кластеры. Чтобы избежать упреков в казуистике, возьмем резкий и отчетливый пример — соединения углерода, для наглядности — углеводороды. . Не будет натяжкой рассматривать их как стабилизированные водородом углеродные кластеры. Алифатические углеводороды — это кластеры углерода с цепочечной структурой, циклические и полициклические — с двухмерной структурой, наконец, адамантаны, кубаны, конгрессаны — представители трехмерных углеродных кластеров. При постоянных. внешних условиях "кластерный характер" углеводородов становится все более явным с усложнением структуры и ростом ненасыщенности. Бульвален (С1рН10) и его сородичи с громадным числом изомеров и легкими переходами между ними уже рассматриваются в литературе как типичные кластерные соединения углерода, и для этого есть все основания. Если быть последовательными, то и алканы нужно признать прочно стабилизированными углеродными кластерами. Здесь кластеры достаточно индивидуальны, так как в обычных условиях барьеры для перехода от g-кластеров настолько высоки, что обеспечивают самостоятельное существование и тех и других. Вместе с тем налицо множество зависимостей,. описывающих свойства - гомологических рядов и выражающих собой размерные эффекты.

Можно быть уверенным, что в подходящих условиях "кластерный характер" и таких соединений углерода обязательно проявится более наглядно. Собственно, это и наблюдается как при пиролизе углеводородов, дающем практически непрерывный набор продуктов, так и в более тонких каталитических реакциях; например, типа синтезов Фишера — Тропша.

Обратим внимание на то, что представления об устойчивости и индивидуальном существовании связаны с масштабами времени, которые для нас естественны. Вероятно, химия короткоживущих кластеров потенциально столь же разнообразна, как, например, химия углерода; просто при достигнутом сегодня временном разрешении мы еще не в силах этого заметить.

Кластеры как переходная форма в химии

Вернемся к схеме, показывающей характер кластеров как переходной формы в химии. Переходы от единицы к множеству уже обсуждались, нужно только добавить, что они вместе с тем суть и переходы от определенных соединений к неопределенным. Но постепенные переходы между дальтонидами и бертоллидами отвечают и движению от .устойчивых кластерных соединений к соответствующим рядам слабо стабилизированных кластеров. Как можно видеть на примере NiCO), с ростом размера такие кластеры оказываются соединениями переменного состава.

То же происходит и без участия лигандов или других стабилизирующих элементов, когда увеличивается число компонентов в теле кластера, например в рядах гетерополи-соединений. Здесь хорошо виден переход от определенных соединений к неопределенным и здесь же усматривается одна из границ понятия кластер: если компонентов слишком много, кластер обращается просто в фазу переменного состава.

Наконец, сознание того, что кластеры суть "вещества-процессы" (выражение В. И. Кузнецова), возникает при рассмотрении реакций, идущих через кластеры или с участием кластеров. Это относится не только к реакциям, связанным с возникновением новой фазы, но и к множеству других; представляется, что большинство реакций так или иначе включают кластерные состояния. Можно поэтому предполагать, что именно существованием кластеров обеспечивается самопроизвольная эволюция сложных химических систем. Ныне возникает "эволюционная химия" (термин предложен В. И. Кузнецовым), химия на новой ступени, изучающая и использующая законы саморазвития сложных систем веществ.


Заключение

Рассматривавшиеся выше случаи развития химических систем с участием кластеров того или иного типа (образование новой фазы, реакционная перестройка поверхности) — суть простейшие объекты эволюционной химии, но уже здесь аппарат теории эволюции, по-видимому, наилучшее средство описания.

Ныне во всех сферах знания все чаще раздаются голоса о необходимости возрождения "универсализма" в науке: узкоспециальная ограниченность оставляет нетронутыми слишком многие стороны и проблемы. Думается, что представление о кластерах важно для химии прежде всего своим универсализмом. "Гераклит высоко оценил бы идею кластеров. Они постоянно существуют в текущей жидкости, непрерывно образуясь и разрушаясь", — заметил один из крупных исследователей природной воды Р. Хорн. Вероятно, древнегреческому философу пришлось бы по душе и общее понятие кластеров — зыбких состояний, которые представляют одновременно и вещества, и процессы во всех областях химии.


Список используемой литературы

1. "Кластеры в физике, химии, биологии" Лахно В.Д., 2001г.

2. "Кластеры: получение и реакционная способность" Смирнов В.В., Тюрина Л.А., 2002г.

3. "Кукурбитурил: играем в малекулы" В.П.Федин, О.А.Герасько, 2000г.

4. "Нанотехнологня: физико-химия нанокластеров" Суздалев Игорь Петрович, 2006г.