Смекни!
smekni.com

Межмолекулярные взаимодействия (стр. 3 из 4)

Характеристики межмолекулярных взаимодействий приведены в табл.

Водородная связь

Водородная связь не является особым типом взаимодействия, и ее природу можно понять с учетом сил, рассмотренных выше. Специфическим для водородных связей является то, что основной вклад, определяющий притяжение при их образовании, дают электростатические взаимодействия. Атом водорода присоединяется к высокоэлектроотрицательному атому, например атому кислорода.

В результате электрон, принадлежащий атому водорода, смещается в сторону электроотрицательного атома. Поскольку атом водорода теряет электрон, его радиус отталкивания мал, и возникает сильное электростатическое притяжение между ним и другими электроотрицательными атомами или молекулами. Так, при образовании димера молекул воды электростатическое взаимодействие намного превышает вклады дисперсионного и индукционного взаимодействий. В минимуме потенциальной энергии димера воды с расстоянием между атомами кислорода T00 ~ 2.9 А вклад электростатической энергии UQ&bsol;eсоставляет - 31 кДж/моль, вклад индукционной энергии равен - 4 кДж/моль, вклад дисперсионного взаимодействия С/dis составляет - 6 кДж/моль, а вклад энергии обменного взаимодействия Uqxc+20 кДж/моль. В жидкой воде при комнатной температуре усредненную внутреннюю энергию молекулы воды можно разделить на те же вклады: <Uq&bsol;q> = - 53 кДж/моль, <C/ind> = - 18 кДж/моль, <t/diS>==-17 кДж/моль и <С4хс>= +47 кДж/моль.

Характеристика межмолекулярных взаимодействий:

Тип взаимодействия Диапазон действия Знак
Электростатическое Дальнодействующие Притяжение/Отталкивание
Индукционное Среднедействующие Притяжение
Дисперсионное Среднедействующие Притяжение
Обменное отталкивание Короткодействующие Отталкивание

Теоретические модели и параметры

При решении конкретных задач необходимо определить силы либо прямыми измерениями, либо с помощью квантово-механических расчетов. Путем численного моделирования эксперимента также можно оценить параметры взаимодействия. Вывод точных аналитических выражений для потенциальных функций непрост. Для больших молекул невозможно ни измерить, ни рассчитать силы. Вместо этого можно использовать параметры, определенные для малых молекул, и относить их к более крупным сегментам; например, принимать, что распределение заряда в амидной связи в полипептиде одинаково по всей длине полипептидной цепи, независимо от природы боковой группы.

Потенциальная поверхность, которая точно отвечает всем экспериментальным данным, известна только для небольших димеров благородных газов. Потенциальная поверхность димера аргон-аргон полностью описывается обменными и дисперсионными взаимодействиями. Точный вид этого парного потенциала чрезвычайно громоздок, но для качественного описания вполне достаточно простого потенциала Леннард-Джонса:

Физический смысл е и у можно понять из рисунка.

Для более крупных частиц, например для молекул аминокислот, обычно пользуются функцией, описывающей взаимодействие центров атомов с учетом потенциала Леннард-Джонса и кулоновского взаимодействия:

где / и/ - центры различных молекул. Полное взаимодействие суммируется по всем /-ым иу'-ым центрам.

Схематическое представление потенциала Леннард-Джонса, где е - глубина минимума энергии притяжения, у - расстояние действия сил отталкивания

Эффективные парные потенциалы взаимодействия между двумя молекулами в среде.

Вода как диэлектрик

Из сказанного выше очевидно, что мицеллообразование ионных ПАВ главным образом происходит за счет электростатических взаимодействий. Вклад электростатических сил в суммарное межмолекулярное взаимодействие наиболее значим; кроме того, электростатические силы - это силы дальнодействующие. Достаточно сильное взаимодействие двух ионов в воде нарушается молекулами воды, так что эффективное взаимодействие ослабевает. Это явление обычно называют диэлектрическим экранированием. Диэлектрическая проницаемость воды очень велика, что сильно влияет на взаимодействие пары ионов в водной среде:

При анализе ионных взаимодействий с хорошим приближением можно рассматривать воду как диэлектрическую среду. Такой подход - это всего лишь примитивная модель, но он оказался краеугольным камнем в теории электролитов и в теории двойного электрического слоя. Одним из проявлений дальнодействия ионных взаимодействий является относительно низкая чувствительность KKM ионных ПАВ к типу противоиона. Например, замена иона натрия в качестве противоиона на ион тетраэтиламмония приводит к незначительному изменению KKM.

Значения KKM для додецилсульфатов с различными противоионами. Причина небольших изменений значений KKM - дальнодействие кулоновских взаимодействий

ПАВ ККМ, мМ
Ci2SO4" Na+ Ci2SO4" Li+ Ci2SO4-K+ Ci2SO4-N; C12SO4-N; 8 9 8 6 5

Если обратиться к структуре мицелл, то очевидно, что электростатические взаимодействия препятствуют мицеллообразованию. Проявляется сильное отталкивание между отрицательно заряженными карбоксилатными группами на поверхности мицеллы. Тогда возникает вопрос: какие силы способствуют образованию мицелл? Конечно, определенную роль могут играть дисперсионные или индукционные взаимодействия, но они обычно невелики и по величине приблизительно одинаковы для взаимодействий молекул воды, молекул воды и ПАВ и ПАВ-ПАВ. Таким образом, эти силы не могут вызывать образование агрегатов молекул ПАВ.

Гидрофобные взаимодействия

Итак, нужно найти силы, ответственные за мицеллообразование. Как уже отмечалось, взаимодействие меду молекулами воды довольно сильное вследствие образования водородных связей. Введение неполярных молекул в воду оказывает сильное воздействие на сетку водородных связей, что приводит к уменьшению энергии взаимодействия. Энергетический проигрыш может быть минимизирован, если молекулы воды каким-то образом организуются вокруг молекулы растворенного вещества. Ценою этому будет проигрыш в энтропии. И свободная энергия переноса неполярной молекулы в воду при комнатной температуре будет определяться большим вкладом энтропии. При растворении неполярных молекул они будут стремиться минимизировать воздействие на сетку водородных связей за счет самоагрегирования. Рис. иллюстрирует силы притяжения между двумя атомами неона в воде. Притяжение возникает как результат эффектов сольватации. Сближение атомов неона вызывается растворителем. Притяжение между двумя атомами неона в газовой фазе характеризуется намного менее глубоким минимумом. На рис. показано, что замена одного из атомов неона на бесконечную гидрофобную стенку, как и следовало ожидать, приводит к еще большему притяжению в воде. Таким образом, можно сделать вывод о том, что гидрофобные взаимодействия обусловливают мицеллообразование.

Из табл. видно, что чем длиннее углеводородная часть молекул ПАВ, тем легче они агрегируют, о чем свидетельствуют более низкие значения ККМ. Гидрофобные взаимодействия могут быть достаточно сильными и являются результатом тонкого баланса энергетического и энтропийного вкладов. В настоящее время принято также считать, что гидрофобные взаимодействия являются главной движущей силой фолдинга молекул белков. Можно привести разные аргументы в пользу того или другого объяснения гидрофобных взаимодействий. Один из способов - допустить сильное когезионное взаимодействие между молекулами воды. Более того, эти взаимодействия чувствительны к ориентации, и любая попытка разрушить структуру приводит к изменению свободной энергии. В каком виде проявляется этот фактор - в энтропийной форме или энергетическом вкладе - это уже вторично. В случае неполярных молекул, например углеводородов, проигрыш в свободной энергии не может быть восполнен взаимодействием с молекулами растворенного вещества.

Простой способ оценки энергии переноса молекулы углеводорода из неполярного окружения в воду задается уравнением

где R - радиус молекулы растворенного вещества. Подобное выражение можно использовать для оценки гидрофобного взаимодействия между двумя контактирующими молекулами неполярных растворенных веществ:

где r - радиус молекулы воды.

Критическая концентрация мицеллообразования алкилсульфатов с различной длиной алкильной цепи.

Снижение KKM происходит вследствие гидрофобных взаимодействий между алкильными цепями

ПАВ ККМ, мМ
C8SO4" 160
CioSO4 40
Ci2SO4" 10
Ci4SO4 2.5