Введение 10% феррита стронция при полимеризационном наполнении ПКА приводит к снижению молекулярной массы на 4%, что свидетельствует об ингибировании процесса синтеза.
2.4 Выводы
1. Проведена идентификация полученного полимера методом ИКС. В спектре полимеризационнонаполненого ПКМ имеются все полосы характерные для ПКА.
В наполненном ПКА уменьшается интенсивность полос поглощения в областях:
2936 – 1416 см-1 - характерных для СН2 групп;
3060 см-1 - резонанс Ферми (колебания NH групп).
Это свидетельствует о возникновении взаимодействия в системе ПКА – феррит стронция.
2. Изучено влияние содержания наполнителя на процесс полимеризации поликапроамида . Установлено, что при введении 10% наполнителя при полимеризации приводит к снижению вязкости растворов и как следствие уменьшению молекулярной массы полимера.
Заключение
В настоящее время известны несколько механизмов полимеризации поликапроамида (ПКА): гидролитическая, катионная и анионная.
Наибольшее распространение для синтеза поликапроамида получила гидролитическая полимеризация, которая является очень продолжительной. Поэтому с целью интенсификации процесса синтеза представляет интерес осуществление полимеризации по катионному механизму.
Катализаторами катионной полимеризации капролактама являются минеральные кислоты. Однако большинство кислот не может быть использовано, так как при высоких температурах они окисляют или разлагают мономер или полимер (азотная и серная кислота). Кроме того, при высоких температурах резко возрастает летучесть некоторых кислот (например, хлористоводородной). Практический интерес может представлять только фосфорная кислота. В присутствии небольших количеств этой кислоты (0,2-0,5%) капролактам полимеризуется достаточно быстро при нормальном давлении.
Катионная полимеризация капролактама, катализируемая безводной фосфорной кислотой проходит с высокой скоростью лишь относительно низкомолекулярного поликапроамида. Значительно лучшие результаты достигаются при использовании смешанных катализаторов, например, активной системы фосфорная кислота - полиэтиленгликоль.
Результаты исследования образцов ПКА, полученного при различной продолжительности процесса показывают, что при продолжительности синтеза 4 часа происходит более полное превращение мономера в полимер с получением ПКА с молекулярной массой ~ 8130.
Сопоставление ИК-спектра ПКА, синтезируемого в присутствии двойной каталитической системы, со спектром стандартного гидролитического ПКА показывает присутствие в нем дополнительных полос: 3030 см-1, относящейся к валентным колебаниям P-N связи; 1944 см-1, относящейся к валентным колебаниям С=О связи; 1029 см-1, относящейся к колебаниям –Р-О-С- групп, что свидетельствует о встраивании фосфора в структуре полученного ПКА.
По данным ТГА исследуемый ПКА является достаточно термостойким полимером в интервале температур до 200°С (потери массы не превышают 3%).
Список использованных источников
1. Алексеев А.Г. Магнитные эластомеры / А.Г.Алексеев, А.Е.Корнев. - М.:Химия,1987. – 204 с.
2. Артёменко С.Е. Физико-химические основы альтернативной технологии магнитопластов и рациональные области их применения / С.Е.Артёменко, С.Г.Кононенко, А.А.Артёменко // Химические волокна. - 1998. - № 3. - С.45-47.
3. Артёменко А.А. Технология высокоэффективных магнитопластов поликонденсационного способа наполнения / А.А.Артёменко, С.Г.Кононенко, С.Е.Артёменко // Пластические массы. - 1999. - №9. - С.21-26.
4. Артеменко А.А.Основы технологии высокоэффективных магнитопластов: учебное пособие /А.А. Артеменко, С.Г.Кононенко, Н.Л.Зайцева.-С.:Химия,2001.-37с.
5. Силантьева В.Г.Особенности полимеризации капролактама, катализируемой фосфорной кислотой / В.Г.Силантьева, Л.Н.Мизеровский, А.Н.Быков // Химические волокна.-1979.- №2.-С.22-26.
6. Силантьева В.Г.Полимеризация капролактама в присутствии кислых эфиров фосфорной кислоты /В.Г.Силантьева, Л.Н.Мизеровский, Л.А.Бакина// Химические волокна.-1984.- №2.-С.27-29.
7. Силантьева В.Г. Полимеризация капролактама в присутствии активирующих систем на основе фосфорной кислоты / В.Г.Силантьева, Л.Н.Мизеровский, А.Н. Быков // Химические волокна. – 1987. – №2. – С.19.
8. Деменко Л.С. Эффективные направления создания прогрессивных технологических процессов производства полиамидных текстильных нитей / Л.С.Деменко, В.С.Шаброва, З.М.Родригес, Ю.В.Крайнов, С.С.Рыбин, В.С.Евсюков //Химические волокна.-1974.- №5.-С.15-19.
9. Роговин З.А. Основы химии и технологии химических волокон / З.А.Роговин. – В 2-х томах. – М.: Химия, 1974. – Т. 2. –344 с.
10. Мизеровский Т.Н. Действие системы H3PO4–H2O–полиэтилен-гликоль при синтезе поликапроамида / Т.Н.Мизеровский, В.Г.Силантьева // Химические волокна. – 1983. – №3. – С. 22-23.
11. Пат. 2084033 Россия, МКИ5H01 F 1/133. Способ получения магнитопластов / Артеменко С.Е., Кардаш М.М., Кононенко С.Г. – №95106266/02; Заявл. 20.04.95; Опубл. 10.07.97.
12. Исследование процесса получения поликапроамида из продукта олигомеризации ε-капролактама / Д.Г.Запольский, Л.В.Кутьина, Т.Н.Биличенко, А.А.Конкин // Химические волокна. – 1974. – №2. – С. 8-9.
13. Никонов Н.Т. Зависимость качества поликапроамида от состава реакционной смеси при гидролитической полимеризации / Н.Т.Никонов, Е.И.Смирнова // Химические волокна. – 1981. – №6. – С. 27-29.
14. Контроль производства химических волокон: справочное пособие/под ред. А.Б. Пакшвера и А.А. Конкина.-М.:Химия 1967.-608с.
15.Рабек Я. Экспериментальные методы в химии полимеров: в 2-х частях / под ред. В.В. Коршака-М.: Мир, 1983-384с.
16.Инфракрасная спектроскопия полимеров/Под ред. И. Деханта. - М.: Химия,1976. - 472 с.
17.Спектральный анализ полимеров/ Л.И. Тарутина, Ф.О. Позднякова.-Л.: Химия 1986.-247с.