Смекни!
smekni.com

Концепции современного естествознания (химическая составляющая) (стр. 8 из 9)

Начиная с 1970-х годов, химики все больше стали обращать внимание на то, что те же самые причины воздействия реакционной среды на катализаторы, которые обусловили появление кинетики стационарных процессов, оказываются ответственными и за наличие нестационарных режимов работы каталитических систем. Было установлено, что в одних случаях стационарное состояние катализаторов не реализуется из-за блокировки их поверхности плотным слоем какого-либо адсорбата, скорость образования которого выше скорости движения стационарности. В других случаях в ходе реакций было зафиксировано несколько нестационарных режимов со скачкообразными переходами между ними. Открыто и изучено множество автоколебательных процессов, свидетельствующих об особом типе нестационарности.

Исследователи приходят к выводам, что стационарный режим, стабилизация которого казалась залогом высокой эффективности промышленного процесса, является лишь частным случаем нестационарного режима. С 1970-х годов обнаружено много случаев нестационарных режимов, способствующих интенсификации реакций. Появились работы, описывающие искусственно создаваемые нестационарные режимы, при которых оказывается возможным не только легче реализовать оптимальные условия реакций, но и достигнуть улучшения качества продуктов (например, более эффективного распределения молекулярных весов в полимерах).

Одним из ведущих звеньев в развитии нестационарной кинетики является теория саморазвития открытых каталитических систем. Первой прикладной областью, где теория развития открытых каталитических систем может быть широко и эффективно использована, являются уже исследованные в лабораторных условиях процессы, в основу которых положено энергетическое сопряжение реакций, в том числе таких, на которые наложены строгие термодинамические ограничения. В этом случае одна реакция помогает другой; в системе развиваются процессы, направленные против равновесия, сама же система приобретает динамическую устойчивость, или «устойчивое не равновесие». Этот принцип использован для осуществления ряда реакций, которые пока не были реализованы другими путями.

В результате развития учения о химических процессах химия теперь имеет реальные предпосылки для решения таких общих задач, как:

􀀹 моделирование и интенсификация фотосинтеза;

􀀹 фотолиз воды с получением водорода как самого эффективного топлива;

􀀹 промышленный синтез широкого спектра органических продуктов и в первую очередь метанола, этанола, формальдегида и муравьиной кислоты, на основе углекислого газа;

􀀹 промышленный синтез многочисленных фтор материалов.

Это обстоятельство является залогом успешного претворения в жизнь задач по созданию малоотходных, безотходных и энергосберегающих промышленных процессов, рачительного использования каждого килограмма сырья и каждого киловатта энергии для производства необходимых материалов.

Ваша точка зрения?

1. Почему лаборатория живого организма была всегда идеалом химиков?

2. Что называется ферментами и какова их роль в «лаборатории живого организма»?

3. Что можно сказать о естественном отборе химических элементов и их соединений в ходе химической эволюции?

4. Что означает саморазвитие каталитических систем?

5. Что означает нестационарная химическая кинетика?

5.8 Выводы

1. Основой процессов в живом организме является биокатализ под действием ферментов.

2. По принципу ферментов создаются катализаторы высокой степени специфичности, превосходящие существующие в данный момент промышленности.

3. Состав и структура биополимерных молекул представляют единый стандартизованный набор для всех живых организмов.

4. Показана исключительная специфичность живого, которая проявляется в поведении фрагментов живых систем на молекулярном уровне.

5. Специфичность молекулярного уровня живого проявляется в существенном различии принципов действия катализаторов и ферментов, в различии механизмов образования полимеров и биополимеров (структура последних определяется генетическим кодом).

6. Пути освоения каталитического опыта живой природы включают в себя:

􀀹 исследования в области металлокомплексного катализа;

􀀹 моделирование биокатализаторов;

􀀹 стабилизация ферментов – создание иммобилизованных ферментов;.

􀀹 исследования, ориентированные на применение биокатализа в промышленной химической технологии.

7. Основу живых систем составляют шесть элементов-органогенов: углерод С, водород Н, кислород О, азот N, фосфор Р и сера S (содержание в организме 97,4%).

8. Из миллионов органических соединений в построении живого участвуют лишь несколько сотен.

9. Отбор активных соединений происходил в природе из продуктов, которые получались относительно большим числом химических путей, и обладали широким каталитическим спектром.

10. Химическая эволюция представляет собой саморазвитие каталитических систем, эволюционирующим веществом являются катализаторы.

11. В ходе эволюции происходит отбор наиболее активных каталитических центров.

6. Кинетика химических реакций

Одна из особенностей химических реакций заключается в том, что они протекают во времени. Одни реакции протекают медленно, месяцами, как, например, коррозия железа. Другие заканчиваются очень быстро, например осаждение нерастворимых солей, а некоторые реакции происходят мгновенно (например, взрывы). Таким образом, различные химические реакции происходят с самыми разными скоростями.

Раздел химии, изучающий скорости химических реакций, называют химической кинетикой.

I. Основным понятием в химической кинетике является понятие о скорости реакции, которая определяется изменением количества вещества реагентов (или продуктов реакции) в единицу времени в единице реакционного пространства.

Для гомогенных реакций (все участники реакции в одном агрегатном состоянии) реакционным пространством является весь объем, заполненный реагентами. А значит скорость гомогенной реакции определяется как изменение количества вещества в единицу времени в единице объема. А т.к. отношение количества вещества к объему представляет собой молярную концентрацию С, то скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

vгом = ± C2 - C1/ t2 t1 , (моль/л . с)

где С2 – С1 – изменение концентрации одного из реагентов за промежуток времени отt1 до t2.

Обычно для реакций, протекающих между газами или в растворах, концентрации реагентов выражают в моль/л, а скорость реакции — в моль/(л • с).

Знак « + »относится к случаю, когда о скорости реакции судят по изменению концентраций продукта реакции (она с течением времени возрастает); знак « —» когда в уравнение подставляется изменение концентрации одного из исходных веществ (она с течением времени убывает).

Если реакция идет между веществами, находящимися в разных агрегатных состояниях (н-р, между твердым веществом и жидкостью), то это гетерогенная реакция. Она проходит только на поверхности соприкосновения веществ.

Поэтому скорость гетерогенной реакции определяется как изменение количества вещества в единицу времени на единице поверхности:

vгет = ± n2 - n1/ (t2 t1). S, (моль/ с . м2),

где S – площадь поверхности соприкосновения веществ.

II. Скорость реакциизависит от природы реагирующих веществ и от условий, в которых реакция протекает. Важнейшими из них являются: концентрация, температура и присутствие катализатора (а также — давление, если реакция протекает в газовой фазе).

6.1 Зависимость скорости реакции от концентрации реагирующих веществ

Рассмотрим реакцию между веществами А и В, протекающую по схеме:

а А + в В = с С + dD

Количественно зависимость между скоростью реакции и концентрациями реагирующих веществ описывается основным постулатомхимической кинетики — законом действующих масс:

скорость химической реакции в каждый момент времени пропорциональна текущим концентрациям реагирующих веществ,возведенным в степени их стехиометрических коэффициентов:

v = k. [A]а . [B]в.

Выражение такого типа называют кинетическим уравнением реакции. Коэффициент пропорциональности kназывают константой скорости..

Чтобы понять физический смыслконстанты скорости реакции, надо в кинетическом уравнении принять, что [А]= 1 моль/л и [В]= 1 моль/л (либо приравнять единице их произведение) и тогда v=k. Отсюда ясно, что константа скорости kчисленно равна скорости реакции, когда концентрации реагирующих веществ (или их произведение в уравнениях скорости) равны единице.

6.2 Влияние температуры на скорость реакции

Из общих соображений понятно, что скорость реакций должна увеличиваться с ростом температуры, так как при этом возрастает энергия сталкивающихся частиц и повышается вероятность того, что при столкновении произойдет химическое превращение.

Для приближенной оценки изменения скорости при изменении температуры широко используется правило Вант-Гоффа: скорость химической реакции становится в 2 — 4 раза больше при повышении температуры на каждые 10 градусов.. Математически это означает, что скорость реакции зависит от температуры следующим образом: