Смекни!
smekni.com

Контактные явления в распределённых гетероструктуpax (стр. 2 из 2)

На частоте 100 кГц ёмкость ячеек C/0,7Ag4RbJ5 + 0,3SnO2/C при температуре +30С уменьшается с ростом толщины образца от 0,25 мм до 1,6 мм приблизительно в 1,7 раза.

Для ячеек C/0,7Ag4RbJ5 + О. ЗБпО^С при температуре +30С на частоте 5 Гц с ростом толщины образца от 0,25 мм до 0,8 мм ёмкость ячейки увеличивается приблизительно в 1,5 раза, а далее, до толщины 1,6 мм, практически остаётся постоянной.

В пятой главе проводится сравнительный анализ экспериментально полученных зависимостей сопротивления и ёмкости изученных структур с теоретически рассчитанными, согласно вариантам модели эффективной среды [1; 2] и перколяционной модели [3]. Вычисления проводились по формулам модели эффективной среды как с учётом влияния координационного числа частиц z на проводимость системы [1]:

о = А, + ((Q2 + Р2) 1'2 + Р) 1'2 = А, + Q/((Q2 + Р2) 1/2 - Р) 1'2; С = А2 + (1/co) *((Q2 + Р2) 1'2 - Р) 1/2 = А2 + Q/(co*((Q2 + Р2) 1'2 + Р) 1'2), где: Р = А4 + (А,2 - vt*/K22) l2; Q = ш*(А3 + A/A2);

А,' = (m*a, + n*o2) /(z - 2); А2 = (т*С, + n*C2) /(z - 2); А3 = (С/о, + C2*o,) /(z - 2); А4 = (о/о2 - uFC; C2) l(z - 2), где: т = z*8/2 - 1; n = z*(1 - 8) /2 - 1

(Здесь 8 и (1 - 5) - объёмные доли фаз); так и без учёта z [2]: N = [((3*6, - 1) + (3*82 - 1) *v) /4] + { [((3*8, - 1) + (3*82 - 1) *v) 2] /16 + v/2}1/2 (Здесь: N = а/а,; v = a2lav где а: и а2 - проводимости фаз 1 и 2, а о - эффективная проводимость смеси; 8, и 82 - объёмные концент рации фаз 1 и 2); а также по перколяционной модели [3]: N = v/(1 - 5*6,), если 8,<ЬС, N = 1,6*(81 - 8о) 16, если 5с <= 8, <= 0,5. Проводились также расчёты проводимости исследованных гетеро структур по уравнению модели, учитывающей образование межфазного слоя с проводимостью с1г [4]:

б^о-о,) /((z/2-1) о+ал) + (1 - 6) *<a-a2}/((z/2-1) а+а2) + + 25(1-S) (o-o12) /{(z/2-1) o+o12) = 0 Результаты расчётов сопротивления гетероструктуры Ag/xAgCI+ +(1-x) SnO. /Ag по уравнению из работы [4] представлены на рисунке 4. Для сравнения на этом же рисунке помещена экспериментальная кривая, соответствующая приведённой расчётной кривой. Как видно из этого рисунка, расчётная кривая почти повторяет экспериментальную во всём диапазоне концентраций AgCI в смеси от 0 до 1, что позволяет проводить вычисления сопротивления данной гетеросистемы по уравнению из работы [4] во всём интервале концентраций.

Для системы Sn02-AgCI в интервале концентраций х AgCI от 0,0 до 0,1 и от 0,9 до 1,0 экспериментальная кривая зависимости сопротивления смеси от концентрации лежит близко к перколяционной кривой. Это даёт возможность рассчитывать сопротивление данной системы в указанном интервале по формулам перколяционной теории.

Для системы Sn02-Ag4RbJ5 в интервале концентраций х Ag4RbJ5 от 0,7 до 1,0 экспериментальная кривая зависимости сопротивления смеси от концентрации практически совпадает с кривыми, вычисленными по модели эффективной среды как с учётом влияния координационного числа частиц z в смеси, зависящего от соотношения размеров зёрен компонентов и толщины поверхностного слоя, так и без такого учёта, что позволяет проводить вычисления сопротивления этой системы в указанном интервале концентраций х Ag4RbJ5 по этим моделям.

Для систем Sn02-AgCI и Sn02-Ag4RbJ5 экспериментальная кривая зависимости ёмкости от концентрации х соли в интервале от 0,0 до 0,1 близка к кривым, вычисленным по формулам модели эффективной среды, учитывающим влияние координационного числа частиц z в смеси, что позволяет пользоваться этими формулами для вычисления ёмкости данной системы в указанном интервале концентраций соли.

Проводится обсуждение экспериментально полученных температурных зависимостей сопротивления исследованных образцов, даётся описание рассчитанных кривых зависимостей энергии активации проводимости от концентрации компонентов в системах SnOz-AgCI и Sn02-Ag4RbJ5.

В шестой главе обсуждаются возможные пути практического применения исследованных систем и полученных в результате этого исследования зависимостей сопротивления и ёмкости от концентрации компонентов в смеси, от температуры и частоты приложенного к образцам переменного напряжения.

Гетерогенные смеси SnOz-AgCI и Sn02-Ag4RbJ5 с наименьшим сопротивлением могут быть использованы для изготовления распределённых электродов, обеспечивающих контакт между фазами с ионной и электронной проводимостью в газовых датчиках.

На основе электрохимической ячейки Ag/AgCI/AgCI-Sn02 создан электрохимический сенсор для определения концентрации хлора в газовых средах различного состава.

Изучение поведения электрохимической ячейки Ag/AgCI/SnOz показало, что такая ячейка обладает достаточно высокой селективностью по отношению к хлору. Однако, её механическая и термическая стабильность невелики, что связано с низкой адгезией полупроводникового электрода к AgCI. Кроме того, быстродействие такой ячейки даже при повышенных температурах (300° С - 400° С) низко (т90 = 15-20 мин).

С целью увеличения механической, термической прочности ячейки и её быстродействия исследовано поведение распределённых электродов AgCI-Sn02.

При применении распределённых электродов в электрохимических ячейках типа Ag/AgCI/AgCI-Sn02 обнаружено, что концентрационная зависимость ЭДС во всех случаях описывается уравнением Нернста для двухэлектронного процесса в соответствии с потенциалоопределяющей реакцией:

2Ag+ + Cl2 + 2е - = 2AgCI

Механическая и термическая устойчивость ячеек с электродами, содержащими более 20% по массе AgCI, намного превышает прочность ячеек Ag/AgCI/Sn02.

Обнаружено, что быстродействие ячеек с распределёнными электродами определяется составом электрода. При этом чем ниже сопротивление электрода, тем быстрее устанавливается электрохимическое равновесие.

В приведённой ниже таблице показано быстродействие (t^, с) сенсоров хлора для различных составов распределённых электродов при различных температурах.

0% 10% 20% 30% 40% 50% 60% 70% 80%
90°С >2000 250 220 170 210 240 130 60 15
150°С >2000 - 90 90 ПО 80 10
200°С >2000 70 40 35 - - 10 7

Объяснить подобные закономерности можно, учитывая, что лимитирующей стадией в детектировании хлора является разрядка двойного слоя на границе ионный проводник - распределённый электрод.

Приводятся результаты исследования зависимости сопротивления и ёмкости образцов от времени пребывания этих образцов во влажной атмосфере на примере ячейки Ag/AgCI/Ag, помещённой в среду с относительной влажностью 55%. Показано, что параметры ячейки изменяются во влажной среде необратимо, то есть ячейка деградирует во влажной среде.

Завершает работу заключение, в котором приводятся выводы, вытекающие из полученных в работе результатов.

ВЫВОДЫ

Исследованы зависимости комплексного сопротивления распределённых структур Sn02-AgCI и Sn02-Ag4RbJ5 от их состава. Обнаружено наличие трёх минимумов при объёмной доле AgCI в системе 20%, 40% и 80%; найдены два состава при 20% и 30%.40% Ag4RbJs, которые соответствуют порогам протекания по отдельным компонентам.

Экспериментально изучены зависимости ёмкости распределённых структур Sn’02-AgCI и Sn02-Ag4RbJ5 от их состава в переменном токе. Полученные зависимости объясняются образованием и распадом связных матриц.

Обнаружены экспоненциальные зависимости проводимости и ёмкости от температуры, что свидетельствует о термоактивационном характере протекающих процессов.

Выявлено, что сопротивление исследованных образцов в диапазоне частот от 5 кГц практически не зависит от частоты, а на более высоких частотах - заметно уменьшается с ростом частоты прикладываемого к образцам переменного напряжения, что можно объяснить вкладом поверхностной высокопроводящей фазы в общую проводимость системы.

Исследованы частотные зависимости ёмкости распределённых структур. Обнаружено явление постоянного угла сдвига фаз, проявляющееся в степенной зависимости ёмкости от частоты.

Показано, что ёмкость гетерогенной структуры C/0,7Ag4RbJ5+ +0,38002/0 линейно возрастает с увеличением толщины на частоте 5 Гц, благодаря развитию внутренней поверхности контакта. На частоте 100 кГц ёмкость гетероструктуры линейно убывает с ростом толщины образцов, так как на высоких частотах вклад межкристаллитной гетерофазной границы ионного и электронного проводников в ёмкость образца ничтожно мал, и ёмкость образца определяется его геометрической ёмкостью.

Исследовано поведение границ AgCI-Sn02/AgCI в присутствии хлора. Обнаружено, что релаксация потенциала границы определяется составом распределённой структуры. Найден состав распределённой структуры, который может быть использован в качестве рабочего электрода электрохимического сенсора на хлор.

ЛИТЕРАТУРА

1. Укше Е.А., Укше А.Е., Букун Н.Г. Импеданс распределённых структур с твёрдыми электролитами. Исследования в области химии ионных расплавов и твёрдых электролитов. / Сб. науч. тр. Киев: Наукова думка. 1985. С.3-17.

2. BruggemanD. A. G. BerechnungverschiedenerphysikalischerKonstantenvonheterogenenSubstanzen.I. DielektrizitatskonstantenundLeitfahigkeitenderMischkorperausisotropenSubstanzen. // Ann. Physik. Leipzig. 1935. Bd.24. S.636-650.

3. Webman I., JortnerJ., Cohen M. H. Numerical Simulation of Electrical Conductivity in Microscopically Inhomogeneous Materials. // Phys. Rev. 1975. V. B11. P.2885.

4. Укше A. E. Импеданс распределённых структур на базе твёрдых электролитов. // Электрохимия. 1997.Т. ЗЗ. Вып.8. С.938.

СПИСОК ПУБЛИКАЦИЙ

5. Карпов И.А., Михайлова А.М. Свойства распределённых структур в системе AgCI-Sn02 // Сборник материалов Четвёртого семинара «Ионика твёрдого тела». Черноголовка, 21-22 апреля 1997 г. Деп. в ВИНИТИ 05.11.97, №3264-В97. - С.64-69.

6. Карпов И.А., Михайлова А.М., Добровольский Ю.А. Проводимость распределённых структур Sn02-Ag4RbJ5 // Тезисы докладов Международной конференции «Композит-98». Саратов, 24-26 июня 1998 г. -С.137-138.

7. Карпов И.А., Смирнова О.А., Симаков В.В., Архипова Т.В., Михайлова А.М. Исследование поведения гетероструктур на основе d-металла и ионного проводника // Сборник материалов Всероссийской конференции по электрохимии мембран и процессам в тонких ионпроводящих плёнках на электродах «ЭХМ - 99». Энгельс, 23 - 26 июня 1999 г. - С.160 - 162.

8. Синник П.И., Третьяченко Е. В:, Карпов И.А. Исследование составляющих проводимости пластифицированных поливинилхлоридных мембран для сенсорных устройств // Тезисы докладов Девятой Международной конференции молодых учёных. Казань, 19-21 мая 1998 г. - С.186.

9. Карпов И.А., Никитина Л.В., Смирнова О.А., Симаков В.В., Ефанова В.В., Михайлова А.М. Электрохимический импеданс композиционных структур, включающих суперионную компоненту // Сборник материалов Международной конференции «Современные технологии в образовании и науке». Саратов, 14 - 16 сентября 1999 г. - С.72.

10. Госрфман В.Г., Карпов И.А., Симаков В.В., Топоров Д.В., Леонтьева Л.Д., Михайлова А.М. Исследование процесса переноса заряда при формировании распределённых структур // Сборник материалов Международной конференции «Современные технологии в образовании и науке». Саратов, 14 - 16 сентября 1999 г. - С.58.